| ava Technical
Reference

Table of Contents

Introduction
Manual Scope and Target Audience
Using This Reference

Reference Manual Structure
Lava Features and Constraints
Lava SQL Reference
The Lava Access Privilege System
The Lava API
The Lava System Schemas
API Structures and Constants
Appendix | : Lava Error Codes
Appendix Il : Source Code Examples
Appendix Il : SQL Examples
Appendix IV : ODBC Interface

Lava Features and Constraints
Database limits
Technical Support
Lava Kernel Releases

Future enhancement
Integrity constraints on columns
Stored procedures and functions
Triggers
Internet / HTML support
Time-Domain
Column-level access restrictions
Views
Standby server
Nested schemas
Linux Lava Server release

ODBC Interface

Key Concepts in the Lava Database
Array Access to Virtual Tables
Boolean Variables
Column buffer
Column Sequence
Control file
DataGrid
Distribution
Distributed Client
Foreign Key
Index
Relations, foreign keys and inter-table joins
Mount mode

Object /Object ID
Primary Key
Raw Tables

Replicator Tables

Result set

Return code (rc)
Row ID /ID

Row status

Schema

Session / Session 1D
SOL Command Execution
Stack Tables
Transaction frame
User

VDT

Virtual Tables

Lava SOL Reference

Introduction

Supported Data Types
Data types and sizes
Variable length types
Nulls in the Lava Database

SQL Operators, Functions and Conditions
Functions
Adggregates
Reserved expressions
Comparisons
SQL in the Lava Database

SQL Command Categories
Database Manipulation
Schema Manipulation
User Manipulation
Table Manipulation
Data Extraction and Manipulation
Transaction Statements
Miscellaneous Statements and Clauses
Future Enhancement

SQL Command Reference
Alter schema
Alter table
Alter session
Alter user
Backup
Column List Clause - Insert
Column List Clause - Select
Column List Clause - Specification
Column List Clause - Drop
Column List Clause - Update
Commit
Connect
Create Database
Create schema
Create relation
Create sequence
Create synonym / Create alias
Create table
Create user

Create view
Delete
Disconnect
Dismount
Distribute
Drop schema
Drop sequence
Drop relation
Drop synonym / Drop alias
Drop table
Drop user
Drop view
Grant role
Grant privilege

Group by Clause
Insert

Mount

Order by Clause
Rename schema

Rename sequence

Rename synonym / Rename alias
Rename table

Rename user

Rename view

Restore

Revoke privilege
Rollback

Savepoint

Select, Select Statement
Set.

Subqueries

Lava pseudo-table
Table List Clause
Truncate
Undelete

Update

Value List Clause
Where Clause

SOQL Syntax Specification

The Lava Access Privilege System
Lava Privileges

The Lava API
API Categories
Mandatory Interfaces
Dismount
Mount
CreateDatabase

OpenSession
CloseSession

User Manipulation
CreateUser

DropUser
DisableUser

EnableUser

Lava Schema Manipulation
CreateSchema

DropSchema

Lava Table Search Functions
SetQueryParameter
CloseQuery
NextQueryResult

SeekQueryResult
FirstColumnEntry

NextColumnEntry
PreviousColumnEntry

Lava Entry ID Functions
FindSchema
GetObject_id
EindUser

Lava Table Manipulation
TableColumns
TableRows
TableSize
ColumnSpec
CreateTablelnstance
CreateTable
AssertTablePointer
DropTable
TruncateTable
RenameTableColumn
RenameTable
AllocateColumnSpace
FreeColumnSpace

Transaction Frames
LocksExist
Set_Transaction
Commit
Rollback

Lava Private Memory Management
CreatePrivateMemory
DropPrivateMemory
GetPrivateMemoryAddress
ExtendPrivateMemory
WritePrivateMemory
ClearPrivateMemory
ReadPrivateMemory

Lava Replicator Table Functions
ReplicatorToDisk
ExtendReplicatorTable
Virtual Realloc

Lava Row-level Table Interface
GetColumn
GetRow
PutColumn
PutRow

AddRow
DeleteRow

Lava Raw Table Interface
InsertRow_VirtualRaw
DeleteRow_VirtualRaw

Distributed Client Operation
RegquestUpdateEvent
DistributeSchema

Lava Thread Support
StartThread
CloseThread

Lava Stack Tables
Push
Pop

GetStackTop
ClearStack

SQL Interface

LavaCommand
Miscellaneous Interfaces
LogEvent
GetServerDateTime
FormatNumber
Format VDT
GetDate
GetTime
HPtimestamp
JulianDate
JulianTime
ServerDate
Extract VDT Time

GregorianDate
MonthDays
DayOfWeek
Random

HeapSort
ParseCommandLine
GetCommandParm
BlockCRC

StringCRC
EndActivity
ShowActivity
StartActivity
MessageBox
ExtractFileName
SplitFullName
Lava Backup System
CreateBackupSet
BackupObjectData
FinaliseBackup
OpenBackupSet
RestoreObjectData
CloseBackupSet
SetBackupFolder
Lava DataGrid Control

CreateGrid
RefreshGrid
SetColumnWidth
SetColumnTitle
SetGridRow
GetGridRow
SetColumnVisible
Lava Compression

Compress
Decompress
Lava Editor Control
TextExtract
AppendText
ClearContent
SearchFiles
Search
Replace
GotoPos
GotoOffset

Copy
GetSelected Text
SelectSegment
Paste

Cut

ClearSelection
NewEditWindow
ResizeWindow
SetGutter
SetScrollBar
CloseEditWindow
TextModified
LoadFile

SaveFile
SetBookmark
NextBookmark
PreviousBookmark
ResetBookmark
ResetAllBookmarks

The Lava System Schemas
Backup Schema
Sys BackupObject

Sys_BackupSet
Event Schema

Sys_Event_Log
Sys_Event_Type
Parse Schema
SQL_ColumnNode
SQL_FilterNode
SQL_ObjectNode
SQL _ParseRoot
SQL_PlanList
SQL_ValueL.ist
System Schema

Vi

Sys_RelationColumns

Sys_Relations
Sys_Cache
Sys_Locks
Sys_ObijectPrivilege
Sys UserObjectAccess
Sys_Reserve
Sys_Sessions
Sys_Threads
Sys_Transactions
Sys_Users
System_ControlFile

Sys_Alias
Sys_ColumnBufferPool
Sys_Objects
Sys_Schemas

Sys_Tables
Sys Table Columns

API Structures and Constants
Lava Structures

Base Types

BackupSetType
ColumnArray Type

ColumnScan_Type
CommandParamType
CommandLineType
DateClass

Heap Sort Procedure Types
Label

ObjectArrayType
ObjectBackupType

QUADINTEGER
Sys Query Type
Sys_Table Columns_Type
TableColumnPointer
TableColumnType
TableFormatPointer
TimeClass
Util_SearchMatch Type
Lava API Constants
Comparison Constants
Data Type Constants
Editor Bookmark Types
Backup Set Constants
Shutdown Modes

Startup Modes

Object Types
Primary Format Codes

Search Match Types
Secondary Format Codes
Table Location

Appendix | : Lava Error Codes

vii

Appendix Il : Source Code Examples

Oberon Examples
Backup Set Creation
Backup Set Restore
Instance tables
SQL Execution and Data Extraction

Virtual table pointers
Table Creation

Appendix 11l : SOL Examples
Simple examples

Advanced examples
Grouping aggregates, subgueries

Appendix 1V : ODBC Interface

viii

List of lllustrations

SIMPIE JOIN BXAMPIE ...t s e st et e te st e e EeeRe e s e e e teneesaenteeneene e e e nteneenrenren 11
BNV oo 11T T 1 S 12
[N To T LT 1 T 1o PSSP 12
BACKUP SCHEMA ERDcoiiiiiiiiitiieece etttk bbb et b e bt b ettt b ettt ebe et e ere e 251
EVENE SChEMA ERDooiioice ettt e b e s be et e et e e st e s tb e s teesbeesbeesbesaeesaeeebeeteenes 254
Parse SCHEMA ERDcoouiiiiii ettt ettt e s b e et e et e e tb e s be e s be e be e s beesbesteesbeesbeesbesneesaeeereebeenes 256
Relational INEGIity ERDc.oiiiiiiiii ittt bbbt bbb e bbbt s b e bt et e et et e e sbe e e 261
USEE / SESSION ERDuviiitiiiitie ettt ettt et s e e et st ett e e st e e ebt e e s bt e e saee e sbb e e ebeeesbbeeeaeeesbbeesabeesbbeesabeestbeesnreesabens 263
User / SESSION / PrIVIIEZE ERDcvoiiieiicecece ettt sttt sttt st e te s aeete e e e st e seenbe e e 268
(@] o TTo A I o L= =t TSSO SSI 269
L oTU oI 53V A= L 1] o] = SRS 287

Manual Scope and Target Audience

Introduction

Manual Scope and Target Audience

This reference manual covers the mounting, connecting and programming of client applications which use a
Lava Database as a storage mechanism. It does not cover the installation and administration of a Lava Database
- for information on these topics consult the Lava Installation and Administration Guide.

This manual is targeted at programmers, power users and administrators who wish to :

. Obtain detailed information on specific interfaces and mechanisms in the Lava Database
. Learn in-depth technical detail on the operation and design of the Lava Database kernel
. Code client application programs to interface to the Lava Database

Topics covered include :

SQL usage

Non-SQL interface using the Lava API
Lava System schema layout

Code examples

Using This Reference

This PDF document is extensively hyperlinked. In order to derive the best usage from this document, note that
the Acrobat PDF reader has a “back” button (just like a browser) located in the toolbar, which looks like this :

| *’HEI'HE% :

to Previous Yiew

After following a hyperlink (any blue underlined text) by left-clicking on the hyperlink with your mouse,
clicking the “back” button will return you to the hyperlink just accessed. The “back” button will work through
multiple levels of links.

The “back” option can also be found in the mouse right-click pop-up menu, named “Go to Previous View”.

Reference Manual Structure

The manual is divided into a number of sections, each of which addresses a specific topic.

Lava Features and Constraints

This section should be read by any prospective power user of a Lava Database. It introduces major features,
requirements and constraints of the Lava Database, and explains important concepts which distinguish the Lava
Database from other SQL databases. All users of Lava Databases who intend to interact with the database
through any of the interface mechanisms should at least read the Key Concepts subsection.

Manual Scope and Target Audience

Lava SOL Reference

The SQL reference should be consulted by administrators and programmers who intend to use SQL to query,
control and update Lava data tables. It specifies the range and limitation of Lava SQL, and provides
information on how to optimize and improve SQL statements in the context of the Lava SQL engine.

The Lava Access Privilege System

The Lava access privilege system allows control over user access to groups of tables (schemas) or individual
tables, as well as limitation of certain other facilities in a Lava Database. This section describes the privilege
mechanism and provides a comprehensive list of privileges available in the Lava Database.

The Lava API

This section covers usage of the Lava API to access low-level procedures for high speed and powerful
interaction with the Lava Database. The topics covered are of an advanced nature, and will only be of interest to
application designers and programmers, and to some advanced administrators who wish to acquire in-depth
understanding of the operation of the Lava Database.

The Lava System Schemas

The system schemas provide information regarding the Lava management mechanisms and system tables which
may be used to obtain information on database operation and user objects. This section will be of interest
primarily to administrators and power users, but will also be consulted from time to time by application
designers and programmers.

API Structures and Constants

The API structures are intended to be used for reference only, and are comprehensively cross-linked and
hyperlinked from the Lava API section.

Appendix | : Lava Error Codes

The Lava error codes are presented for information and reference only, and may be consulted when errors are
reported by Lava API procedures.

Appendix Il : Source Code Examples

The code examples will be primarily of interest to programmers who wish to examine examples of working
techniques to achieve specific results using the Lava APl. Examples are provided in several programming
languages and cover a range of Lava programming techniques.

Appendix Ill : SOL Examples

Reference Manual Structure
The SQL examples provide a number of working examples of SQL statements ranging from simple to

advanced, illustrating usage and capabilities of Lava SQL. It will be of interest to especially administrators, but
also to programmers and power users who intend to use SQL to interact with and control the Lava Database.

Appendix IV : ODBC Interface

This appendix documents the Lava ODBC driver which provides standard ODBC access to the server database.
However, use of this interface is strongly discouraged as all the major advances in database technology
presented in the Lava Database are rendered void through use of this interface, which still adheres to legacy
interface techniques. Please consult the sections Lava SQL Reference and The Lava API for information on the
native Lava interfaces, and in particular the section Key Concepts in the Lava Database and the reference for the
command LavaCommand which provides direct SQL access into the Lava Database should be consulted to
acquire information on the totally revised techniques used in the native interface to the Lava Database. The
coded example SQL Execution and Data Extraction may also be consulted for insight into the native
mechanisms provided.

Reference Manual Structure

Lava Features and Constraints

Database limits

All database objects (schemas, users, tables, indexes, synonyms, sequences...) are unlimited in number,
except for limits on disk storage.

Total database size is limited only by disk storage on the server, but the client space is also limited in
terms of active (in-use) tables, which are loaded in memory on the client workstation in order to
enhance performance.

Table size is limited to 2x10° bytes per table, except for variable data tables (used to store varstring
data) which are limited only by available data storage.

Row size in all tables (with the exception of variable length columns, which are dealt with separately)
is limited to a maximum of 1500 bytes. This excludes any variable length extensions to varstrings, but
includes the varstring base length. Table rows are limited to a maximum of 500 columns.

A row may have any number of variable length columns, provided the sum of the base lengths of these
columns (the portion stored within the originating row) does not exceed 1500 bytes less the other non-
variable columns. The variable portion of these columns may be any length up to, but not exceeding,
2x10° bytes.

Variable length columns may not be used as filter columns for any SQL or search operation.

Length of an index entry 255

Length of a raw device name 50
Number of partitions in a dbspace 127
Length of a user name 14

Number of log files 64

Number of indexes per table 20

Length of a database name 10

Length of a table name (the same applies to statement IDs, index names, domain names, constraint names,
synonym names, view names, document names, column names and cursor names) 18

Number of VARCHAR columns per table 20
Length of a dbspace name 10

Length ofaDBS name 10

Number of columns per index 16

Number of extents per data or index area 90
Length of a DECIMAL/MONEY type 32
Length of a CHAR type 32767

Length of a VARCHAR type 254

Length of a BLOB/TEXT type 2GB
Length of a table record 32767

Number of columns per table 32767
Number of tables per database unlimited
Number of databases per DBS unlimited

Number of dbspaces 127

Number of locks per DBS configurable

Number of buffers per DBS configurable

Number of concurrently opened tables configurable

Future enhancement

Number of concurrently active users configurable

Technical Support

Server Requirements
Windows NT, 2000 or XP, or Windows Server 2000 or 2003.

Client Requirements
Windows XP or Windows Server 2003.

Lava Kernel Releases

The following table lists only major Lava releases. Interim releases with minor upgrades and error corrections
will be announced at irregular intervals as the requirement arises.

Lava Release Planned Release Date
5.0 July 2005

51 November 2005

6.0 March - June 2006
6.1 Late 2006

The following table lists currently planned enhancements and the associated Lava release. Although this
schedule is subject to change, every effort will be made to adhere to the planned release. Where deviations from
this schedule are unavoidable, the revised schedule will be provided to all licenced database users by e-mail at
the earliest possible time.

Feature Planned release Limitations
Standby server 5.0

Views 5.0

Distinct clause 5.0

Time-Domain 5.0

Database freeze for 5.0

Backup

Stored procedures and 51

functions

Integrity constraints on 51

columns
Nested schemas 5.1
Triggers 51

Internet / HTML support 5.1

User Roles (access 51
restriction)

Undelete 5.1
Sequences 5.1
User password expiry 6.0
Column-level access 6.0

restrictions

Set command 6.0
Linux Lava Server 6.1
release

Future enhancement

Integrity constraints on columns

uniqueness and ranging

Stored procedures and functions

Triggers

Internet / HTML support

Time-Domain

Column-level access restrictions
disallow update of particular columns to nominated users

Views

Standby server

Nested schemas

Future enhancement

Key Concepts in the Lava Database

Linux Lava Server release

ODBC Interface

The Lava Server database has a functional ODBC driver which provides standard ODBC access to the server
database. However, use of this interface is strongly discouraged as all the major advances in database
technology presented in the Lava Database are rendered void through use of this interface, which still adheres to
legacy interface techniques. A reference to this interface is provided in the appendix ODBC Interface.

Key Concepts in the Lava Database

Key Concepts in the Lava Database

The following concepts are central to the operation of the Lava database. Although much of the design and
implementation of the Lava database is similar or, in some cases, identical to other SQL server databases, there
are a number of important differences. These concepts illustrate the differences and key issues important to
understanding how a Lava database operates.

Array Access to Virtual Tables Defining and using pointers to arrays of structures to access table data

Boolean Variables

Column buffer

Column Sequence

Control file
DataGrid
Distribution

Distributed Client

Foreign keys, relations and joins

Index

Join methodology

Julian Date

Mount mode

Object / Object ID

Primary Key

Raw Tables

Relations and joins

Replicator Tables

Result set

Return code (rc)
Row ID /ID

Row status

directly

Dedicated TRUE / FALSE variable type

Lava equivalent for a table index

The sequence (index) of a column within a table
The single most important Lava system table
An instant table display - extended list control
Table and data distribution to client databases

Mechanism for operating a client database with transparent server
communication

Lava approach to inter-table relations and join syntax, including inner
and outer joins
Lava indexing through column buffers

Lava approach to inter-table relations and join syntax, including inner
and outer joins

A numeric date format used throughout the Lava database

The mode in which the database is mounted - can be Server, Client or
Exclusive.

The object concept and object types

The Primary Key of every standard table in a Lava Database is
predefined as the row ID of the table

Packed memory tables

Lava approach to inter-table relations and join syntax, including inner
and outer joins

Memory replicators for disk tables

Result tables for SQL queries

Error code philosophy, implementation and interpretation
Row identifiers : meaning and usage

Current and deleted rows, the deletion mechanism and row re-use

Key Concepts in the Lava Database

Schema Grouping and isolation mechanism for sets of tables
H
Session / Session ID Database sessions and their identification
SQL Command Execution Logic behind execution of SQL commands in a Lava database
Stack Tables A feature in the Lava database which allows tables to be created which

behave like stacks, and offer extensible stack operations

Transaction frame Transactions, commit and rollback, client and server implications
User User accounts and constraints
VDT The Version Date Time concept and usage

Virtual Tables Memory data tables

Key Concepts in the Lava Database

Array Access to Virtual Tables

The Lava database kernel supports three primary table modes. The first, physical tables, is analogous to the
storage method used in all other SQL server databases. The second, Virtual Tables, are unique to Lava. Virtual
tables are defined strictly in memory, and the data is of course transitory. The third, Replicator Tables, are also
unique to Lava - these are physical tables which are “shadowed” to memory for high-speed access.

For Virtual Tables defined by the user, it is possible to gain access to the table through a pointer to an array of
structures, where the structure type coincides exactly with the format definition (column information) for the
virtual table. This may be achieved in one of two ways - the first is through the procedure AssertTablePointer,
which informs the Lava database kernel that the array pointer is to be maintained whenever the memory
allocation for the virtual table changes. The second is during creation of an instance table through use of the
CreateTablelnstance procedure, at which time an array pointer may be specified.

When either of these techniques is used, the Lava database kernel maintains the pointer to the array whenever
the memory allocation for the virtual table in question changes for whatever reason - for example, if multiple
AddRow actions are performed, or a SQL “insert into as select” results in many rows being added to the virtual
table, the current memory allocation may prove to be inadequate for the new row requirement of the table. In
this case, the memory allocation will be enlarged, which, depending on current memory usage, may result in the
memory allocation for the table being moved to a different area of memory. In this case, the Lava database
kernel will automatically update the nominated array pointer to the new memaory address for the virtual table.

Note that although it is permissible to read and write existing rows from and to the virtual table in question, the
programmer should take care not to overstep the current row boundaries on the table - this will most likely result
in a memory access violation. The onus is on the programmer to ensure at all times that the array indexes in use
are limited to the number of actual rows in the table - this can easily be determined through use of the
TableRows procedure.

When new rows are to be added to the virtual table, these MUST be added using the AddRow procedure -
adding rows via array access will almost certainly end in an access violation, as the Lava database kernel is
unaware of the addition of new rows to the table and cannot validate memory allocation.

If the table in question permits row deletion (see DeleteRow) which depends on whether a Row status was
defined in the table format, the user should take care when using array access to read data from the table to
validate that the row is current.

Example code
For a detailed example of array access to a virtual table, see the source code examples (Virtual table pointers,
Instance tables) provided.

Back to Key Concepts

Boolean Variables

In all Pascal language dialects (including Modula 2 and Oberon) the boolean type is separated from
conventional numeric variables, and has valid values of TRUE and FALSE only, represented by 1 and 0
numerically. The size of the variable is a byte.

Back to Key Concepts

Column buffer

All current SQL databases use indexes (formerly known as indexed-sequential access) to provide random access

Key Concepts in the Lava Database
(more correctly phrased keyed direct access) to table data within the database.

In contrast, the Lava Database does not use indexes for this purpose. Instead, a new concept in data access is
employed, termed column buffers.

Column buffers are sorted memory-based binary-searchable reference arrays which allow ultra-fast access to
any row of the table referenced by the column buffer.

Whereas index are disk based, slow to maintain and slow to construct, column buffers are very low cost to
maintain and fast to construct. Indexes across two or more columns are needed for complex multi-column
filters and joins to the tables represented, whereas column buffers always represent only one column, as range
buffers are very fast to construct for special multi-column filter purposes and allow much faster access with
much more flexible application than comparable indexes.

Back to Key Concepts

Column Sequence

Similarly to the concept of an object ID referencing tables through a unique numeric reference identifier,
column sequences are a numeric reference identifier used throughout the Lava API to uniquely reference a
column within a table.

A column sequence is a 1-based index into the columns for a table (i.e. the first column in the table is declared

to be column sequence 1) so that a pair of numbers, the object ID and the column sequence, uniquely identify
every column in the entire database.

Back to Key Concepts

Control file

The Lava Control File (System_ControlFile, located in the System schema) is very useful to any advanced SQL
user, as it presents a single reference providing object (table) identification, many important object attributes,
and information ranging from deleted row counts to row size.

Back to Key Concepts

DataGrid

Back to Key Concepts

Distribution

Back to Key Concepts

Distributed Client

Back to Key Concepts

Key Concepts in the Lava Database
Foreign Key

See Primary Key, row ID and relational integrity for information on foreign keys.

Back to Key Concepts

Index

Back to Key Concepts

Relations, foreign keys and inter-table joins

For details related to SQL syntax, see SQL Join Syntax
For details on the relational integrity mechanism in the Lava Database, see Relational Integrity

The Lava approach to joins and inter-table relations is different from the general relational database approach to
this topic. Starting from the conception of the Lava database kernel, a new and more rigid approach (explained
in detail below) was applied to relations, for two major reasons :

. The first is relational integrity. In order to avoid the problem of relational key columns changing
during the database lifecycle, the entire concept of related columns was revised.

. The second was performance. Using the Lava approach, the database becomes far more efficient and
significantly faster.

. The third was the issue of relational design. Using the Lava approach to relations, it is more difficult to

build inappropriate relations into the database design which fundamentally violate normalization rules.

In order to implement these design goals, a simple yet sufficient and effective strategy for inter-table relations
was selected. The mechanism allows only one method for relating two tables, namely a join column in the
many (child) table which unconditionally links to the row ID in the one (parent) table, which is automatically
the primary key in the parent table. An example would be :

Consider the three tables in the illustration Sys_Event_Class |
Simple join example. There are two related " Sys Event _Type | Fow_status

tables; Sys_Event_Class has a 1:M (one to many) 0

relation with Sys_Event_Type, as does Flow_status —B—— T
Sys_Event_Group. Each of these is achieved by LPDT Evant class

placing a join column (Class_id and Group_id
respectively) in the Sys_Event Type table. Each | Event

of these columns is required to be a longint Deseription Sys E ?E"t—Em"p]
(dword). These join columns contain, in all ':la“—"?' s g Row_status

cases, the value of a row ID in the related table. G"Z'UF{_":' D

For entries in the Sys_Event_Type table where Severity WOT

no join entry exists (or is yet linked) the join) ’ Ewent_Group

column is null (0).
Simple join example

Several questions should immediately occur to

you in connection with this method. These are answered superficially below, and the more complex ones are

treated more comprehensively elsewhere in this reference.

Q. Can | relate more than one source column to single target table?

A In general the answer is no, if the columns are with respect to a single specific join. As the content of
the join column is a row ID in the target table, and this is always unique, having more than one column
for a single join is redundant as each would contain the same value. (See below for an example of a

>0

Key Concepts in the Lava Database
two-column join and the equivalent Lava implementation).

However, if more than one join is in question (for example, an exchange rate table linking both to the
source currency and the target currency, source and target currency both being entries in the same
currency table) then one should define two columns (say SourceCurrency_id and TargetCurrency_id)
in the rate table, each relating to a specific and separate join to the currency table.

How do | implement many to many relations?

By using a join table. If table A has an M:N relation with table B, this is achieved by specifying a join
column in table A (say A_J_id) which has a many to one relation with a separately defined join table
(say J), and similarly table B contains a column (say B_J_id) which also has a many to one relation
with table J. This successfully implements the M:N relation. Any attributes which belong to the join
are now added as columns to the join table, J.

What do | do in cases where my join was formed between
two (or more) columns in the source table and two (or more)

columns in the target table? (For the case where this

implements a M:N join, see the previous example). Branch
The easiest way to answer this is by way of an example. Title
Consider the diagram provided, Two-column join. Clearly, H City

in this case, both join columns are essential. However, what S uburb
this join is in fact illustrating is a normalization error. The

corrected design is provided below in the diagram o
Normalized join. Two-column join

Customer Branch Suburb

City

Mame Title

Branch_id Suburb_id Name

In the properly normalized design, not only do we obtain a significant performance enhancement
through a forced optimization of the join between Customer and Branch, but we also are forced to
normalize the Suburb and City tables correctly, which means that any attribute columns to the original
non-normalized Branch table (in the diagram Two-column join) will now be correctly attributed where
they belong - in the non-normalized example, unavoidable duplication of attribute values belonging to
the City table would occur. At the very least, even if a City and / or Suburb table were implemented in
the non-normalized case, duplication of the City name itself would occur, possibly creating erroneous

Normalized join
mis-spelt city entries. In addition, maintenance of the original Branch table would rapidly become a
nightmare, as there would be any number of City columns to correct if an error or change were to have
to be made to the data (for example, if a city changes its name - uncommon, but it does happen;
consider Leningrad becoming St Petersbug). In the normalized example, no duplication, no
redundancy and no maintenance problem can arise.

What about the case where a join absolutely requires more than one column specified between two
tables in order to filter or limit the responses?

No problem. The above issues relate to database design - in design-relational terms only one join on
the row ID of the foreign table is permitted, but in SQL you may use any number of join columns for
filtering purposes. In fact, it is not even a requirement that a relation has been formally registered in
the database in order to be able to perform a join between the tables in SQL - you may specify any
number of any columns of any type in a SQL join between two tables.

Key Concepts in the Lava Database

Can I do SQL joins on string columns?

Absolutely. In the SQL engine, a join is merely a match between the values of two columns in joining
tables. These joining columns may have any type except boolean (boolean joins would be too
expensive - by definition there are only two boolean values, 0 and 1, therefore a boolean join is half as
bad as no join at all) and the SQL engine will simply match the values in the columns to arrive at the
join. The only preclusion with string columns is in terms of Lava-maintained relations; these can only
be between numeric columns where one is the row ID of the parent table. This having been said, string
joins are not recommended as they are slower to process (and less definitive) than numeric joins, but if
strings are all you have in your existing data, you can certainly use them.

> O

Relational Integrity

In terms of the method implemented in Lava for inter-table relations, the issue of relational integrity is
simplified quite significantly. As it is quite impossible for the join column to “change” (in terms of a renaming
or alteration of spelling), there is no update cascade integrity (on modification) - if the join column is updated,
this is merely a selection of a new related entry in the join table, and no cascaded update is required.

The provided integrity facilities relate strictly and only to deletion of linked entries in the related tables, and
therefore are limited to delete restrict and delete cascade. The first will disallow a deletion of the parent entry
if related entries in the child table exist, and the second will delete any related child entries if the parent entry is
deleted.

SQL Join Syntax

With due respect to the efforts exerted by the 1ISO group on SQL syntax, we have decided to stay with the join
mechanism conventionally used prior to the announcement of SQL-92. An example is provided below :

select
count(so.id),
schema_name

from

sSys objects so, sys schemas sc
where

sc.id = so.schema_id and

so.id < 70
group by

schema_name

The join in the example, sc. id = so.schema_id, is stated - as was conventionally the case - in the where
clause of the select.. As can be seen from the example, filters are also stated in the where clause.

The syntax for outer joins is simply an addition of an appended keyword, OJ or OUTERJOIN (both are
recognized, and are case insensitive) to that end of the join which may require allowance of a missing join entry.
For example, in the case above, the sensible outer join would be sc.id = so.schema_id oj, which
would include any objects not belonging to (or unlinked to) a schema.

Back to Key Concepts

Mount mode

Client, Server or Exclusive

Back to Key Concepts

Key Concepts in the Lava Database

Object /Object ID

In order to present a uniform interface to many of the Lava API interfaces which deal with different forms of
entities in the Lava database, and to have a consistent way to address various elements within the database,
many lava entities are addressed through an object entry in the Sys_Objects system table. These entries can
represent tables of various kinds, indexes, stored procedures and functions, and in future releases other object
types will be enabled and supported.

In API terms, the unambiguous identifier for an object is the object ID. This is the row ID of the entry for the
object in the Sys_Obijects table.

Thus, instead of many interfaces which process table requests receiving a table 1D, the object ID is used instead.
This allows easier and more consistent interpretation of the identifier for various interfaces and various object
types, as a single point of departure is used throughout.

Back to Key Concepts

Primary Key

The Primary Key for every non-Raw table in a Lava database is its row ID, which is a mandatory column and is
system maintained. See row ID for further information. See also relational integrity as defined and
implemented in a Lava database for information on primary and foreign keys and relational joins.

Back to Key Concepts

Raw Tables

Back to Key Concepts

Replicator Tables

Back to Key Concepts

Result set

Back to Key Concepts

Return code (rc)

Throughout the Lava system, return codes are standardized and have a uniform implication wherever
encountered. In all cases, a return code of O (zero) implies no error, i.e. successful completion.

A return code greater than 0 is an event ID, that is the row ID of an event entry in the system event log
(Sys_EventLog). This entry in the event log will specify the error (or potentially the series of errors) which
occurred during execution of the request.

A return code less than 0 is an error constant, as specified in the appendix Lava Error Codes

Back to Key Concepts

Key Concepts in the Lava Database

Row ID /ID

The Lava Database kernel is designed around a number of core table mechanisms, of which one of the most
important is the concept of a unique row ID for each row in each table.

The row ID is the ordinal of the row in the table, with the first valid row being row one. Thus, the row ID is
simply a numbering of rows in the table, counting all rows including any deleted rows (see Raw tables for
information on non-deletable rows in packed tables).

In theory, since the row ID is identified by the database as part of the fundamental row access mechanism, it is
not even necessary for the row ID to be represented in the table data. However, the moment the row data is
removed from the table (through a GetRow, for example) into a local buffer, the row cannot be identified unless
the row ID is stored within the column information.

For this reason, the first two columns of every standard, non-raw table are defined as being the row status and
the row ID, as follows :

Column Sequence ~ Column Name Column Type Generic Type
1 Row_status RowsStatus Byte
2 ID RowID longint (dword)

The ID field as depicted above is system maintained (i.e. on adding a new row to a table, either through a SQL
insert command or through AddRow, the system asserts the correct value in the ID column).

In addition, the ID column is defined as the automatic and only Primary key for every table. All relations
managed by the Lava Database with this table as the parent table, are defined from the ID column of the table as
the primary key of the relation. See Relational Integrity for further information on this topic.

Back to Key Concepts

Row status

The Lava database deviates from conventional database practice in the implementation of a user-visible row
status column (for tables which permit conventional deletion - see also Raw Tables for further information).
The row status (a single byte-wide column, which is always the first column in the table) indicates the status of
the row, including unused, current, deleted, locked, and owned. Amongst other advantages, the row status
permits undeletion (recovery) of deleted rows provided the row has not yet been re-used. In addition, the row
status is critical to the Lava implementation of distributed client operation, which allows the database to
maintain the most current row information even on rows which are still within a transaction frame
(uncommitted) on the originating client database.

Back to Key Concepts

Schema

A schema is an encapsulating or grouping entity that allows tables to be accumulated into a coherent set, and
user permissions and access to be limited to the schema. Schemas allow for efficient backup strategies, as sets
of tables belonging together can be backed up as a single group.

Back to Key Concepts

Key Concepts in the Lava Database

Session / Session ID

In order to access a Lava database, the user must open a valid session. This session defines the nature of the
connection to the server (exclusive, client) as well as defining the user account being used to access the
database. This, in turn, will define the access privileges accorded the session.

When a valid session has been created (see OpenSession), an entry in the Sys_Sessions table is created for the
session which defines the session attributes. Almost all interaction with the database requires specification of a
valid session entry; this is achieved by providing the session ID, which is the row ID (or ID) of the session entry
in Sys_Sessions.

Back to Key Concepts

SQL Command Execution

client and server execution; mount mode, LavaCommand, virtual table access through Array Access to Virtual
Tables, example code

Back to Key Concepts

Stack Tables

see also Lava Stack Tables for information on the Lava stack API.

Back to Key Concepts

Transaction frame

Back to Key Concepts

User

Back to Key Concepts

VDT

The acronym VDT expands to Version Date Time, and is used as the uniform Lava date-time stamp whenever
chronology is logged in the Lava database.

The current VDT as defined by the Lava Server may be obtained using the GetServerDateTime procedure.

The VDT is stored in a longreal (8 byte float) in which the integer portion represents a Lava Julian date, and the
fractional portion represents the time of day logged to the millisecond.

A Julian date is a numerically coded date, from a (normally arbitrary) starting date, which varies from
application to application. In the case of the Lava Julian date, day 1 is January 1%, 300 CE.

Key Concepts in the Lava Database

The VDT can be decoded through use of several Lava procedures; such as Format VDT (which returns a string
with the date and time coded in text format), and GregorianDate (which returns individual date fields from the
integer portion of a VDT). The time fields of a VDT can be decoded using the Extract VDT_Time procedure

Back to Key Concepts

Virtual Tables

Back to Key Concepts

Key Concepts in the Lava Database

Lava SQL Reference

Introduction

Lava SQL is derived from a number of current SQL dialects, as well as the ISO SQL-92 and SQL-99
specifications. In general, the SQL syntax implemented in the Lava SQL engine is very similar to (and in many
respects the same as) most of the popular SQL implementations currently in use.

There are, as with any SQL engine, certain limitations and unique characteristics which distinguish Lava SQL
from other implementations. See the paragraph Relations, foreign keys and inter-table joins and specifically the
sub-paragraph SQL Join Syntax for information on the largest deviations from standard or 1ISO-92 SQL.

Supported Data Types

Each column defined in a Lava Table has a specified data type, which is numerically coded in the
Sys_Table Columns system table which stores all column data for all tables in the database. The supported data
types are listed below, with the numeric data types used in the column definition.

Data types and sizes

Code Internal Datatype SQL syntax Description

1 1H byte BYTE

33 21H Row status ROWSTATUS

8 8H boolean BOOLEAN

2 2H short integer (2- SHORTINTEGER
byte)

3 3H integer (4-byte) INTEGER

35 23H Row ID ROWID

4 4H quad integer (8- QUADINTEGER
byte) - limited
support

51 33H Date DATE

67 43H Time TIME

55 37H VDT (DateTime) VDT

7 7H float (8-byte) FLOAT

9 9H character (1 byte) CHAR

10

11

28
43
13
29
100

0AH

0BH

1BH
2BH
ODH
1DH
64H

string (fixed
length)

varstring (fixed
length base with
variable length
extension to
2x10°%)

packed varstring
varunicode
varbyte

packed varbyte

Structure (Single-
depth record
comprised of basic
data types)

Array (1-
dimensional array
of any fixed length
type, including
structures)

Variable length types

varstring

varunicode

varbyte

Unsupported types

STRING

VARSTRING

PACKEDVARSTRING
VARUNICODE
VARBYTE
PACKEDVARBYTE

Nulls in the Lava Database

The following types are listed for completeness, but are not supported in the current revision of the database.

Decimal
Currency

Binary coded decimal type
Decimal type flagged as a particular currency in the default format for the column

Nulls in the Lava Database

The current release of the Lava Database does not support null column values. This feature is provided for in

the Lava design, and will be implemented by the next major release.

SQL Operators, Functions and Conditions

Functions

ABS
ARCCOS
ARCSIN
ARCTAN
COos
DEG
EXP
FORMAT
INT
LN
LOG
LOWER
RAD
ROUND
SIN
SLICE
STRINGPOS
SQRT
SOUNDEX
TAN
TRUNC
UPPER
random
concatenate (||)

Aggregates

AVG
COUNT
MIN
MAX
SUM

Reserved expressions

Pl
ROWID
DATE
TIME
VDT

Comparisons

Nulls in the Lava Database

SQL Command Categories
SQL in the Lava Database

General Approach to SQL Syntax

Taking into account the effort expended on the ISO SQL standard, it is the opinion of the Lava system
architects that for the majority of users the 1SO syntax is somewhat clumsy and unwieldy, and the
specification is not in all cases easy to interpret. In particular, the method proposed for specifying joins
is, in our opinion, not as elegant or easy to understand, code and interpret as a simple filter clause in the
where clause of an SQL statement. After careful consideration, and with due respect to the detail in the
ISO specification, we have therefore decided to depart from this standard in a number of respects.

Departures from the 1SO syntax

Select statement : join specification

Referential integrity constraints

The only major departure from this standard is in terms of the join syntax. For the rest,
Comments in SQL statements

Comments may be specified at any point in a SQL statement, and comments may be nested to any
level. A comment is delimited by /* and */

SQL Command Categories

Database Manipulation

Create Database
Mount

Dismount

Backup

Restore
Connect

Disconnect

Schema Manipulation

Create
Drop
Rename
Alter

Distribute

Restore

Backup

User Manipulation

Create

Drop

Rename

H

Grant

Revoke

Alter user(password schema)
Alter session

Connect

Disconnect

Table Manipulation

Create Table

B
o

Iter

Distribute

Create alias

Drop alias

Truncate

Create Relation

Drop Relation

Data Extraction and Manipulation

Select

SQL Command Categories

SQL Command Categories

Update

Delete

Insert

Subqueries

Transaction Statements

Commit

Rollback

Savepoint

Miscellaneous Statements and Clauses

System pseudo-table

Column list - Select Clause

Group by Clause

Order by Clause
Table List Clause

Where Clause

Future Enhancement

The following commands are not yet implemented in the current release, but are listed as the keywords are
reserved and the command syntax is finalized

Grant role

Create view

Drop view

Rename view

Undelete

Create sequence

Drop sequence

Set

SQL Command Categories

SQL Command Categories

SQL Command Reference

This section documents all the SQL commands implemented in the Lava SQL engine. The commands have
been ordered alphabetically, including clauses such as (for example) the Group By clause. Every attempt has
been made to place reference hyperlinks wherever appropriate, but if the reader does not wish to read the entire
SQL command reference, the best access point is through the SQL command category listing which provides a
means of locating associated commands in given command domains. The hyperlinks from the individual
commands can then be used to access related references.

SQL Command Reference

Alter schema

The Alter Schema command is used to define the allowable access to the schema. This permits certain schemas
with reference information only to be rendered read-only, disallowing any change to the schema content
whatsoever.

ALTER SCHEMA schemaname SET ACCESS accessmode

Prerequisites
The session must have ALTER SCHEMA privilege on the nominated schema.

Variants
ALTER [CLIENT] SCHEMA schemaname SET ACCESS accessmode

The [client] qualifier instructs the SQL engine to perform the alteration on the client database only. This will
not affect the status of the schema on the server at all.

ALTER [SERVER] SCHEMA schemaname SET ACCESS accessmode

The [server] qualifier causes the schema to be altered on the server to which the session is connected. This is
the default operation.

Qualifiers and Parameters
schemaname The name of the schema to be altered.
accessmode The data access mode of the schema. Available modes are :
READONLY The schema allows read access only - updates are disallowed.
READWRITE The schema may be updated by sessions with appropriate
privileges.

Results
The access mode of the nominated schema is modified as stipulated.

Remarks

If the schema is set to READONLY mode, no modifications may be made to the objects contained by the
schema. This includes dropping or creating tables, truncating tables, or any table row modification such as
deletion or update.

READONLY schemas will not permit data restore using the Restore command, as this will require truncation or
drop of tables within the schema, which is not permitted in this case. If a schema which is flagged as
READONLY is to be restored, the schema must first be set to READWRITE, after which the restore may be
performed and the schema can be set back to READONLY.

Backup operations are permitted on READONLY schemas.

If the schema is set to READWRITE, normal modifications to table content as well as creation and dropping of
tables is permitted.

Examples

ALTER SCHEMA fred SET ACCESS READONLY;
ALTER SCHEMA joe SET ACCESS READWRITE;

See also
Schema Manipulation

SQL Command Reference

Alter table

The Alter Table command is used to alter attributes of the nominated table, including column definitions, the
table name or the table schema.

ALTER TABLE tablename ADD (column list - spec)
ALTER TABLE tablename DROP (column list - drop)
ALTER TABLE tablename MODIFY (column list - spec)
ALTER TABLE tablename RENAME TO newtablename
ALTER TABLE tablename SCHEMA newschema

Prerequisites
The session must have ALTER TABLE privilege on the nominated table.

For the ALTER TABLE ... SCHEMA command, the session must in addition have ALTER TABLE privileges
in the specified new schema for the table.

Variants

There is no permitted [client] variant of the alter table command, as this would render distributed data tables
inconsistent with the server. As a result, if the table is distributed this command always acts on both the server
and client copies of the table to ensure consistency.

If the table is non-distributed and occurs only on the server, the command acts on the server table.
If the table is defined only on the client, the command acts on the client table.

Qualifiers and Parameters
tablename In all versions of this command, the tablename parameter specifies the table
to be altered. If the table is not in the session’s current schema, a schema
prefix is required to fully identify the table.
Column list - spec The column list specification allows the definition of a list of column names
and types to be added or modified for the nominated table. See Column List

- Specification for details.

Column list - drop The column drop list allows nomination of a list of columns to be removed
from the table. See Column List - Drop for details.
newtablename The new table name for the nominated table.
newschema The schema to which the table is to be moved.
Results
ALTER TABLE ... ADD : The specified columns are added to the table on both the server and

the client databases if the table is distributed, or to the server or
client table only if the table occurs on only that database.

ALTER TABLE ... DROP: The listed columns are dropped from the table on both the server and client
databases if the table is distributed, or from the server or client
table only if the table occurs on only that database.

ALTER TABLE .. MODIFY : The specified columns are modified to new column types on both
the server and client databases if the table is distributed, or on the
server or client table only if the table occurs on only that database.

ALTER TABLE ... RENAME : The table is renamed on both the server and client databases if the
table is distributed, or on the server or client database only if the
table occurs on only that database.

ALTER TABLE ... SCHEMA : The table is moved to the specified new schema on both the server
and client databases if the table is distributed, or on the server or
client database only if the table occurs on only that database.

Remarks

SQL Command Reference

If the table column layout is modified through the ADD, MODIFY or DROP forms of the command, table
backups performed before the alteration will still restore to the modified table, except for added or dropped
columns. In other words, if columns are added to a table and a restore is performed, the new columns will be
empty after the restore throughout the table. If columns are dropped, those columns will (obviously) not be
restored during the restore operation, but all remaining tables that match the column list prior to the restore will
be restored correctly. If column types are modified using the MODIFY form of the command, the restore
mechanism will attempt to convert the data in the backup to the new column type. If a sensible conversion can
be performed, the restored data will comply with the new column type. If no sensible conversion can be
performed (such as from non-numeric string data to a numeric column type) the column is left blank by the
restore.

If the table name or schema is altered using the RENAME or SCHEMA forms of the command, the restore will
no longer successfully identify the table and will create a new copy of the backup table by the original name in
the original schema (or in the session’s current schema if the backup set does not specify a source schema).

If the table is moved to a different schema using the ALTER TABLE .. SCHEMA command, the table will be
moved only if the user has sufficient privilege to alter the table in both the table’s current schema and the
proposed new schema for the table. This is to avoid the possibility of the user moving the table to a schema
where it is no longer accessible.

Examples
Add two new columns to existing table fred :

ALTER TABLE fred ADD (column_new_ 1 INTEGER, column_new_2 STRING(50));
Drop two existing columns from table fred :
ALTER TABLE fred DROP (column_old_1, column_old_2);
Change the type of an existing column in table fred :
ALTER TABLE fred MODIFY (column_old_3 INTEGER);
Rename table fred to table joe :
ALTER TABLE fred RENAME TO joe;
Move table fred from its current schema to schema different_schema :
ALTER TABLE fred SCHEMA different schema;

See also
Rename Table, Table Manipulation

SQL Command Reference

Alter session

The Alter Session command may be used to modify the current schema or default backup folder for an existing
session.

ALTER SESSION SCHEMA newschema
ALTER SESSION BACKUP FOLDER newbackupfolder

Prerequisites
To modify the current schema the user must have at least READ access to the nominated schema.
There are no prerequisites for modifying the backup folder.

Variants
None - the command acts on the current session.

Qualifiers and Parameters

newschema The name of an existing schema which becomes the current schema for the
session.
newbackupfolder The full path of an existing folder on the workstation
Results
ALTER SCHEMA : The current schema for the session is changed to the nominated
schema.
ALTER BACKUP FOLDER : The default backup folder for the session is changed to the
nominated folder path.
Remarks
ALTER SCHEMA :

The nominated schema must exist, and the user must be permitted to read the schema.

Even if the user may see the schema and may change the current schema as nominated, this does not guarantee
that any tables will be visible to the user in the new schema - if the user is denied access permission to all tables
in the new schema, the schema will appear empty.

The current schema for this session is changed only - the default schema for the user account is not modified,
and the next connect will revert to the default schema for the user. See Alter User for information on how to
change the default schema for a user account.

ALTER BACKUP FOLDER :
The nominated folder must be fully specified (full file path) and the folder must exist.

Examples
Change the current schema to the EVENT schema :
ALTER SESSION SCHEMA EVENT;
Change the default backup folder to a new folder :
ALTER SESSION BACKUP FOLDER c:\lava\backup

See also
Alter User, Backup, User Manipulation

SQL Command Reference

Alter user

The Alter User command may be used to modify the default schema or the password for an existing database
user.

ALTER USER username SCHEMA newschema
ALTER USER username PASSWORD newpassword
ALTER USER username SCHEMA newschema PASSWORD newpassword

Prerequisites
The specified user must be the user account for the current session, or the session must have ALTER USER
privilege.

Variants
None. The user account on the server is always changed - modifying the user on the client would not be
sensible, as this modification would be lost on dismount.

Qualifiers and Parameters
username The username for the account to be modified
newschema The new default schema for the user account
newpassword The new password for the user account

Results
The default schema and / or the password for the nominated user account is modified.

Remarks

The new default schema and / or new password are immediately implemented, but since there may be current
sessions using the nominated user account, these sessions will continue to operate using the schema or password
which were valid at the time the sessions were established. Any new sessions established on the nominated user
account will see the new attributes for the user account.

The password as specified is unencrypted. On execution of the command, the password is encrypted in the
system user table.

Future enhancement
Passwords will have an expiry attribute to allow password expiry at synchronous intervals

Examples

ALTER USER fred SCHEMA UserSchema_1 PASSWORD jennifer;

See also
Alter Session, User Manipulation

SQL Command Reference

Backup

The Backup command performs a backup on a nominated schema.
BACKUP SCHEMA schemaname;

Prerequisites
The session must have BACKUP privilege on the schema. In addition, any tables within the schema for which
the session does not have READ access will not be backed up.

The nominated schema must be distributed if the backup command is executed on a client - this is unnecessary
if the mount mode is Exclusive.

A backup folder for the session must have been asserted - see Alter Session.

Variants
None. The backup is always performed from the client, although the data in the backup is server data as the
schema must be distributed for the backup to proceed.

Qualifiers and Parameters
schemaname The schema on which the backup is to be performed.

Results
A backup file is created for the nominated schema.

Remarks
The mount mode must be Exclusive, or the nominated schema must be distributed to the client, in order for the
backup to succeed.

The backup process creates a single file backup in the current default backup folder - see Alter Session.
The default file type (file extension) for Lava backup files is .Ibs (Lava Backup Set).
Future enhancement
Currently it is not possible to freeze updates to the database during execution of the backup. A planned
enhancement will allow suspension of any commits during the backup process to ensure that the backup data is
not inconsistent in any way as a result of partial updates.
Examples
Assert a backup folder and backup the schema fred :
ALTER SESSION BACKUP FOLDER qg:\lava\backup;
BACKUP SCHEMA fred;

See also
Alter Session, Restore, Schema Manipulation

SQL Command Reference

Column List Clause - Insert

This variant of the column list is used in the insert command, and simply specifies a list of columns from the
nominated table which are to be initialized to values stipulated in the value list (insert ... values variant) or the
select column list (insert ... as select variant).

The basic form of the column list is as follows :
(column_1, column_2 ... column_n)
The syntax of the insert column list is :

ColumnListlnsert ::= (ColumnList)
ColumnList 2E= ColumnSpec [, ColumnList]

where ColumnSpec is the name of a column in the table nominated for the insert.

Remarks
Any number of columns from the table may be specified, but each column may only be specified once.

Each column specified in the column list must be matched by a corresponding value in the value list, or a
corresponding select column in the select column list, depending on the form of the insert command used.

The type of the column to be inserted and the corresponding value or select column do not have to be identical.
The SQL engine will do a best-case conversion of the value to be inserted into the data type of the column
specified for insertion.

Any columns not specified in the insert column list will be left blank (empty string for string types, 0 for
numeric types.

The Row_status and 1D columns must not be specified in the column list for standard (non-Raw) tables. These
columns are maintained by the Lava Database kernel, and cannot be set by the user. The Row_status column
will be set to CURRENT, and the ID column will be set to the correct row ID value for the row used when the
resulting data row is inserted into the table. The row to be used will depend on whether the table allows re-use
of deleted rows, and on whether unused (deleted) rows are found in the table.

See also
Insert, Data Extraction and Manipulation

SQL Command Reference

Column List Clause - Select

This variant of the column list is used in the Select statement.
The basic form of the column list is as follows :
column_1, column_2 ... column_n
Each of the columns specified may include calculations or functions, as follows :
(column_1 + 3) * 4, log(column_2) / 20.5
In addition, any of the columns may be a subquery :
column_1, (column_2 + 3) * 4, cos(Pl),
(select i1d from system.sys objects where object name = “mytable”),
column_3
In the above example, the third column to be selected will be the object ID of the user’s table, named mytable.
Finally, columns may specify aggregates :

sum(column_1), avg(column_2), max(column_3)

Where aggregates are used, the results may be grouped by further columns - see the Group by clause for further
details.

The full syntax of the select column list may be found in the section SQL Syntax Specification.

Remarks
Any number of columns from the nominated tables in the table list of the select command may be specified, and
any column may be specified any number of times.

Subqueries may be nested to any depth. Note, however, that as subqueries are evaluated separately from the
main query, in certain cases it is more efficient to specify a ‘flattened’ query. The Lava SQL engine will
attempt to evaluate queries as economically as possible, but this will not always result in the best possible
evaluation of the required results.

When a column is coded as a subquery, that subquery must return exactly one row with exactly one column. As
the subquery is intended to replace a single column (or calculated value), the result of the subquery must be a
single value (any data type is permitted). If the specified subquery results in more than one column or more
than one row in its result set, an error will be returned and the select will fail.

See also
Select statement, Subquery, Data Extraction and Manipulation

SQL Command Reference

Column List Clause - Specification

The Column List Specification is used in both the Alter Table and the Create Table commands, and specifies
the names and data types of a list of 1 or more columns for addition to (Alter Table) or specification of a
complete table (Create Table).
The general form of the list is :

(column_1 datatype 1, column_2 datatype 2, ..., column_n datatype n)

Each entry in the list comprises a pair of specifications separated by one or more space characters; the first is the
name of the column, the second is the data type for the column.

The list may contain any number of columns.

For a comprehensive list of allowable data types, see Supported Data Types.

Remarks
Each column name specified in the list must be unique.

In addition to being unique within the specified list, column names specified in an Alter Table command must
comply with the following constraints :

. If the Alter command specifies the modify option, each column name specified must exactly match an
existing column in the table to be altered
. If he Alter command specifies the add option, each column name specified must also be unique

considering the existing columns of the table to be altered.

The total number of columns specified for the table in both the Create command and the Alter ... add command
may not exceed 500. In addition, the sum of the column sizes for all columns specified may not exceed 1500
bytes. (This does not include the variable portion of variable length column types - see Variable length types for
more information.)

See also
Create Table, Alter Table, Supported Data Types, Table Manipulation

SQL Command Reference

Column List Clause - Drop

This variant of the column list, identical in syntax to the form used in insert commands (see Column List Clause
- Insert), and simply specifies a list of columns from the nominated table which are to be dropped (deleted).

The basic form of the column list is as follows :
(column_1, column_2 ... column_n)
The syntax of the insert column list is :

ColumnListDrop Ii= (ColumnList)
ColumnList 2E= ColumnSpec [, ColumnList]

where ColumnSpec is the name of a column which is to be dropped from the nominated table.

Remarks

Any number of columns from the table may be specified, but each column may only be specified once.
The Row_status and 1D columns may not be specified for standard (non-Raw) tables. These columns are

mandatory, and cannot be dropped by the user.

See also
Alter Table, Table Manipulation

SQL Command Reference

Column List Clause - Update

This form of the column list is used in the Update command to specify columns to update and corresponding
values.

The general form of the list is :
column_1 = value 1, column_2 = value 2, ..., column_n = value n

Each entry in the list comprises a pair of specifications separated by an equals sign; the first is the name of the
column, the second is the value to be assigned to the column.

The list may contain any number of columns.
The values specified may contain calculations :
column_1 = (column_1 + 3) * 4, column_2 = log(35) 7/ 20.5
Any value specification may be derived in terms of a subquery :
column_1 = (select max(amount) from inv_details where ID = Inv_id)

Remarks
Each column name specified to be updated in the list must be unique.

If a subquery is used to specify the value for the column, the subquery must return exactly one row and one
column. If more rows or more columns are returned, the query will return an error and the update will fail.

See also
Update, Subguery, Data Extraction and Manipulation

SQL Command Reference

Commit

The Commit command commits open transaction frames for the current session.

COMMIT
COMMIT subframe

Prerequisites
None. The prerequisites apply to the transactions that comprise the transaction frame on which the commit is to
be performed; the commit itself has no prerequisites.

Variants
None. The Commit command always acts on the current session, which determines the appropriate server on
which the commit is executed.

Qualifiers and Parameters
subframe The name of an existing transaction subframe - see Savepoint

Results
The transaction frame is partially committed if a subframe is specified, and fully committed if no subframe is
specified.

Remarks
If a Savepoint is executed before any modifications are performed in the session, specifying that savepoint as
the subframe to be committed is equivalent to specifying commit without a subframe.

If a subframe is specified which is partway through the current transaction frame, the commit does a partial
commit from that savepoint onward - effectively what this does is to remove the subframe and combine it with
the root transaction frame for the session.

Examples

DELETE fred WHERE ID = 5;

SAVEPOINT newsubframe;

DELETE fred WHERE ID = 6;

COMMIT newsubframe;

UPDATE fred SET name = “fred” WHERE ID = 7;
COMMIT;

See also
Rollback, Transaction Statements

SQL Command Reference

Connect

The Connect command attempts to connect to a Lava Database. Both exclusive and server connections are
supported.

CONNECT SERVER servername USER username PASSWORD password

Connect ServerClause user [password password]
ServerClause : Exclusive | server servername | serverip ipnumber

Prerequisites
A valid user account with the stated password on the nominated server.

Variants
CONNECT SERVERIP serverlPaddress USER username PASSWORD password

The SERVERIP variant of the connect command may be used to connect to servers visible only via an IP
network. This is generally true of servers accessed via the internet.

CONNECT EXCLUSIVE USER username PASSWORD password

The CONNECT EXCLUSIVE variant of the command can only be used on databases which are mounted
Exclusive - Client mode databases only support SERVER connections.

Qualifiers and Parameters

servername The network server name of a server which can be addressed by name on a local
Windows network.

username The name of a valid user account.

password The password for the user account.

serverlPaddress The IP address (in conventional a.b.c.d numeric format) for the server

Results
A connection is established with the specified Lava Server.

Remarks
Establishing a connection to the Lava Server is required to create a current session to the server. A valid session
is required for all Lava commands.

Prior to connecting to a server when mounted in Client mode, the client database must be mounted - see Mount
for more information.

Examples
CONNECT SERVER CentralServer USER fred PASSWORD “long password”

See also
Database Manipulation, User Manipulation

SQL Command Reference

Create Database

The Create Database command creates a new Lava database.

CREATE DATABASE FOLDER databasefolder

Prerequisites
There should be no existing database at the nominated folder.

Variants
None.

Qualifiers and Parameters
databasefolder A full filepath specifying the location of the new Lava Database.

Results
A new Lava Database, containing no user tables or user accounts.

Remarks
The Create Database command is not intended for client databases. These are created automatically when a
connect to a server database is performed.

The system account for the new database is SYSTEM with password MANAGER. The administrator should
change the password to this account before placing the database in use.

The default database path is set to the specified databasefolder. Subsequent commands which require a
database path, such as CONNECT EXCLUSIVE, will refer to the database at the folder specified.

Examples

CREATE DATABASE FILEPATH s:\lava\primary;
CONNECT EXCLUSIVE USER system PASSWORD manager ;
ALTER USER system PASSWORD newsystempassword;
CREATE USER fred

DISMOUNT;

See also
Database Manipulation

SQL Command Reference

Create schema

The Create Schema command is used to create a new schema in the database. The schema is normally created
on the server, but it is possible to specify creation on the client.

A schema is an encapsulating or grouping entity that allows tables to be accumulated into a coherent set, and
user permissions and access to be limited to the schema. Schemas allow for efficient backup strategies, as sets
of tables belonging together can be backed up as a single group.

A schema may be used as a means of hominating sets of tables (and in the future, other objects) for purposes
such as data distribution, as well as being a useful mechanism in large databases with many tables to divide the
database into more manageable sets of objects.

CREATE SCHEMA schemaname

Prerequisites
The session must have database wide CREATE privilege

Variants
CREATE [CLIENT] SCHEMA schemaname

The [client] qualifier instructs the SQL engine to create the schema on the client database only. This implies
that the schema will be transient, existing only as long as this particular client session is mounted. On dismount
of the client database, the schema is dropped, together with any tables that were created within the schema.

CREATE [SERVER] SCHEMA schemaname

The [server] qualifier causes the schema to be created on the Lava Server to which this client is connected. This
is the default operation.

Qualifiers and Parameters
schemaname The parameter schemaname specifies the name of the newly created schema. This
name must be unique across all schemas currently existing on the database within
which the schema is being created.

Results
On successful completion, a new schema is created on the selected database.

The schema is initially empty, with the exception of the default system variable length column tables, which are
for system use only.

Remarks
In order to access the new schema, the schema and any objects within the schema can only be accessed by
prefixing any object to be accessed by the schema name

Future enhancement

In the current release of the Lava Database, schemas are non-hierarchical, although provision has been made
in the system design for schema hierarchies. Functionality will be added to allow schemas to be created as
subordinates of master schemas, to arbitrary depth. This will allow greater flexibility in controlling sets of
tables and other objects both in terms of access privileges and in terms of data management for backup and
distribution purposes. See Lava Kernel Releases for the planned release schedule.

Examples

In the following example, a new schema (fred) is created. An existing table in the current schema, existingtable,

SQL Command Reference

is then moved to the new schema. A select is first performed using a specified schema prefix to access the
schema which is non-default to the current user. The current schema is then set for the current session (this will
not alter the default schema for the user on next connection) and the table is once again queried, this time
without the need for the schema prefix.

CREATE SCHEMA fred;

ALTER TABLE existingtable SCHEMA fred;
SELECT * FROM fred.existingtable;
ALTER USER myuser SET SCHEMA fred;
SELECT * FROM existingtable;

See also
Alter Table, Alter User, Schema Manipulation

SQL Command Reference

Create relation

The Create Relation command creates a relation between two tables which will be used for relational integrity
purposes.

CREATE RELATION FROM PARENT mastertable TO childtable
COLUMN master_id CONSTRAINT relationconstraint

Prerequisites
The session must have CREATE RELATION privilege on the schema to which the tables belong, as well as
ALTER TABLE privilege on both of the tables.

Variants
None. The command is always executed on the server.

Qualifiers and Parameters

mastertable The parent table in the relation (the one table in a one : many relationship)
childtable The child table in the relation (the many table in a one : many relationship)
master_id The column in the child table which stores the row ID of the master table to
which a row entry in the child table is related.
relationconstraint The constraint to be applied to the relation :
CASCADE If an entry in the parent table is deleted which has related
child entries, all related child entries are deleted as well.
RESTRICT If an attempt is made to delete an entry in a parent table
which has related child entries, the deletion fails.
NONE The relation does not restrict or cascade deletions

performed on the parent table.

Results
A relation is created between the nominated parent and child tables on the nominated child table column.

Remarks
For a complete and detailed description of the implementation of relational integrity in a Lava Database, see
Relational Integrity.

Examples

The following is an actual relation in the EVENT schema - for a graphical depiction of the relation see the
illustration under Event Schema.

CREATE RELATION FROM PARENT Sys_Event_Type TO Sys_Event_Log
COLUMN Event_Type_id CONSTRAINT RESTRICT

See also
Relational Integrity, Table Manipulation

SQL Command Reference

Create sequence

The Create Sequence command is stipulated as a future provision, and is not available in the current release of
the database. The specification below is preliminary, but should be as implemented in release 5.0 of the Lava
SQL engine.

The Create Sequence command creates a new sequence by the specified name.

CREATE SEQUENCE sequencename STARTVAL startvalue ENDVAL endvalue
INCREMENT incrementval termqualifier

If the CYCLE option is specified, the sequence wraps to the specified MINVAL when the MAXVAL is reached.

CREATE SEQUENCE sequencename STARTVAL startvalue ENDVAL endvalue
INCREMENT incrementval CYCLE

Prerequisites
The session must have CREATE SEQUENCE privilege in the current schema.

Variants

CREATE [CLIENT] SEQUENCE sequenceattributes
The [client] qualifier instructs the SQL engine to create the sequence on the client database only. This implies
that the sequence will be transient, existing only as long as this particular client session is mounted. On

dismount of the client database, the sequence is dropped.

CREATE [SERVER] SEQUENCE sequenceattributes

The [server] qualifier causes the sequence to be created on the Lava Server to which this client is connected.
This is the default operation.

Qualifiers and Parameters
sequencename The name of the sequence to be created. This must be unique within the current

schema.

startvalue The starting value of the sequence. This is the first value returned by the sequence.
It may be any numeric value, including fractional values.

endvalue The final value of the sequence. This is the last value returned by the sequence

before either terminating or cycling. It may be any numeric value, including
fractional values.
incrementval The increment amount. This may be negative or fractional.
termqualifier The method used to terminate the sequence. This method is applied when the
maxvalue is reached.
TERMINATE The sequence expires on reaching the maxvalue. An attempt to use
the sequence after this fails.
CYCLE The sequence cycles back to the minvalue and continues
incrementing.

Results
A sequence with the specified attributes is created in the current schema.

Remarks
The sequence is always created in the current schema.

The name of the sequence must be unique within the sequences defined in the schema.

SQL Command Reference

Sequences are updated immediately on access, and do not revert on execution of a Rollback command.
If the incrementval is to be negative, the startvalue should be higher than the endvalue.

Future enhancement

The Create Sequence command is specified for future enhancement of the Lava Database, and will only be
available in release 5.0 of the kernel and SQL engine. See Lava Kernel Releases for the planned release
schedule.

Examples

CREATE SEQUENCE integersequence STARTVAL 1 ENDVAL 20
INCREMENT 2 CYCLE;

CREATE SEQUENCE floatsequence STARTVAL 5.7 ENDVAL 2.3
INCREMENT -0.05 TERMINATE;

See also
Miscellaneous Statements and Clauses

SQL Command Reference

Create synonym / Create alias

The Create Synonym and Create Alias commands are equivalent alternatives of the command to create an alias
(synonym) on a table. A synonym or alias is an alternative name for the table which will identify the table
equivalently to the proper table name.

CREATE SYNONYM tablealias FOR tablename
CREATE ALIAS tablealias FOR tablename

Prerequisites
The session must have CREATE privilege on the schema to which the nominated table belongs.

Variants
None. The Create Synonym command always executes on the server.

Qualifiers and Parameters
tablealias A new alias for the nominated table.
tablename The table for which the alias is to be created. If the table is not in the current schema,
the schema name must be prefixed to the table name.
Results
An alias as specified is created for the nominated table. The alias is persistent, and will exist until explicitly
dropped.

Remarks
After creation of the alias, the table may be referred to by either the original table name or by the alias name.

The specified alias must be unique within the schema. This uniqueness requirement includes any tables defined
within the schema.

The alias belongs to the same schema as the table, and if the alias is referred to from another current schema, the
schema name for the alias / table must be prefixed to the alias as would be the case for the table.

Examples
Create an alias for the event log :

CREATE ALIAS errorlog FOR event.sys event_log;
Select from the new alias :

SELECT * FROM event.errorlog;

See also
Table Manipulation

SQL Command Reference

Create table

The Create Table command creates a new table in the current or specified schema.

CREATE TABLE tablename (Column List - Spec) tableattributes
CREATE TABLE tablename AS SELECT Select Statement tableattributes

Prerequisites
The session must have CREATE TABLE privilege on the schema within which the table is to be created.

Variants

CREATE [CLIENT] TABLE tablecreationstatement;

The nominated table is created on the client database. Note that in contrast with many SQL client / server
options, in the case of Create Table, the Client mode is the default mode.

If the table is created on the client database, it is always VIRTUAL (no other qualification is permitted) and is
always transitory - it will be dropped on dismount. Both physical and persistent virtual tables can only be
created on the server.

CREATE [SERVER] TABLE tablecreationstatement;

The nominated table is created on the server database. The table is not distributed by default; in order to
distribute the table an explicit Distribute Table command must be issued. Note that in order to create the table
on the server, the [SERVER] option must be explicitly stated, as client mode is the default for this command.

Qualifiers and Parameters
tableattributes An optional qualification of the type of table to be created. If omitted, a
virtual table will be created (in the default mode, Client mode) or a physical
table if server mode was specified.

Valid type qualifications are :

PHYSICAL This is the default for server creation. A physical
(conventional) table is created, without replication.
Physical tables can only be created on the server.

VIRTUAL A virtual table is created. This is the default for client
creation, which is also the default mode for the Create
Table command. The table exists purely in memory, and
the content of the table is transitory; all data in the table is
lost on dismount / mount. See Virtual Tables for further
information on this type of table.

PERSISTENT Indicates a non-transitory table - this qualifier is only valid
for tables of type VIRTUAL. If not specified, virtual
tables are dropped on dismount. Even for PERSISTENT
tables the content of the table is lost on dismount, but the
table itself still exists on re-mount.

REPLICATOR The table is a physical, replicated table (specification of
PHYSICAL is redundant if the REPLICATOR
qualification is specified). Replicator tables can only be
created on the server. See Replicator Tables for futher
information on this type of table.

Additional attributes may be specified depending
on the type of table being created :

RAW If the table being created is a Raw table (which is

only permitted for virtual tables) this attribute

SQL Command Reference

may be specified, which prevents the system from adding row status and row 1D columns to the column
specification for the table. Note that Raw tables are very restricted in use and should only be created where
absolutely required.

RECLAIM This is the default, and allows deleted rows to be
re-used when row insertions are performed.
NORECLAIM Under special circumstances, it may be necessary

to prevent the kernel from re-using rows which
have been deleted, for example to use block
references to associated rows of data in the table.
The NORECLAIM attribute prevents the kernel
from re-using deleted (free) rows when inserting
new data rows.

INITIALSIZE Only valid for VIRTUAL tables, this attribute
allows specification of the initial memory
allocation for the table on creation or mount.

RESERVEROWS Only valid for server tables, this attribute may be
used to specify a non-standard number of rows to
be reserved for addition when a session
distributes the table.

tablename The name of the table to be created. If the table is to be created in a schema
other than the current schema, the required schema name must be prefixed
to the table name.

Column List - Spec The list of columns to be specified for the new table. See the specification
of the column list for further details.
Select Statement The table to be created is defined in terms of a select statement (of arbitrary

complexity - any variant of the select statement is permitted) performed on
existing tables. See the specification of the select statement for further
details.

Results
A new table is created in the specified or current schema.

Remarks

The table name must be unique within the nominated or implied schema. This uniqueness requirement includes
any aliases defined in the schema.

The nominated schema (if different from the current schema) must already exist.

Note that in the default mode for this command, a virtual table is created on the client database, which is

transitory both in terms of content and the definition of the table itself - in this case the table will be dropped on
dismount of the client database.

If the user wishes to create a physical table on the server, as would be the case with a conventional SQL server
database, the following form of the command must be used :

CREATE [SERVER] TABLE tablename (Column List - Spec);

Note that in the above example, the PHYSICAL qualifier is omitted because this is the default table type for
server creation.

In the CREATE AS SELECT form of the command, the individual columns of the table created are of the same
data type as the selected columns in the select statement. In cases where operations are performed on data
columns, the columns created will comply with the data type resulting from the relevant operation.

Future enhancement

SQL Command Reference

In a future release of the Lava kernel, the option TIME-DOMAIN will be permitted, which creates a Time-
Domain table set with advanced auditing and timeslicing features. For more information on the Time-Domain
mechanism, see Time-Domain. See Lava Kernel Releases for the planned release schedule.

Examples

Note that although upper and lower case are used in the examples below for clarity, all SQL commands are case
insensitive.

Create a new physical replicator table named fred on the server in the schema testschema :

CREATE [SERVER] TABLE testschema.fred (
Row_status RowStatus;
1D RowlD;
Name STRING(50);
Ownership LONGREAL ;
) REPLICATOR;

Create a new virtual table (the only allowable type) on the client, using a select. This example will create an
identical copy of the system event log table in the schema clientschema.

CREATE TABLE clientschema.fred
AS SELECT * FROM EVENT.Sys Event Log;

Create a virtual table on the client and specify an initial memory allocation :

CREATE TABLE fred (
Row_status RowStatus;
1D RowlD;
Name STRING(50);
Ownership LONGREAL ;
) VIRTUAL INITIALSIZE(3M);

Create a new physical replicator table named fred on the server and specify no re-use of deleted rows and a non-
standard row reservation :

CREATE [SERVER] TABLE fred (
Row_status RowStatus;
1D RowlD;
Name STRING(50);
Ownership LONGREAL ;
) REPLICATOR NORECLAIM RESERVEROWS(200);

Create a virtual raw table on the client (note the absence of Row_status and ID columns) :

CREATE TABLE fred (
Name STRING(50);
Ownership LONGREAL ;
) VIRTUAL RAW;

See also
Table Manipulation

SQL Command Reference

Create user

The Create User command creates a new user account on the server.

CREATE USER username PASSWORD password SCHEMA schema

Prerequisites
The session must have database wide CREATE privilege.

Variants
None. The Create User command always executes on the server.

Qualifiers and Parameters

username The new user account name.
password The initial password for the user account.
schema The initial default schema for the user account.

Results
A new user account is created on the server.

Remarks
The new user name must be unique across the server database.

The password may be null; this will result in a user account which may be used without a password. This mode
is not recommended, as it permits access to the database without proper security; however, if the user account is
limited to non-hazardous access and privileges, this can be a useful form for guest users.

The schema specified is the schema which is automatically set as the current schema for any session logged in to
the new user account.

Initially, the user account is allocated only READ privileges on the default schema - all other privileges on the
default or any other schemas must be explicitly allocated.

Future enhancement
User passwords will have an expiry attribute to allow password expiry at synchronous intervals

Examples

The following example creates a new schema, creates a user account with the default schema set to the schema
just created, and allocates full privileges on the schema to the account, with the exception of the right to drop
objects in the schema or drop the schema itself :

CREATE SCHEMA fredschema;

CREATE USER fred PASSWORD fredspassword SCHEMA fredschema;
GRANT ALL ON SCHEMA fredschema TO fred;

REVOKE DROP ON SCHEMA fredschema FROM fred;

See also
User Manipulation

Create view

SQL Command Reference

The Create View command is provision for future enhancement; the command is not available in the current

release of the database.

Prerequisites
None - future provision

Variants
None - future provision

Qualifiers and Parameters
None - future provision

Results
None - future provision

Remarks
None - future provision

Future enhancement

This command will be available in release 5.0 of the Lava SQL engine. See Lava Kernel Releases for the

planned release schedule.

Examples
None - future provision

See also
Table Manipulation

SQL Command Reference

Delete

The Delete command deletes rows in a data table according to the filters specified.
DELETE tablename WHERE whereclause

Prerequisites
The session must have DELETE privilege on the table.

Variants
None. The command is executed on the specified table, which must be unique, and therefore fully determines
how and where the deletion takes place.

Qualifiers and Parameters
tablename The name of the table within which rows are to be deleted. If the table is not in the
current schema, the correct schema name must be prefixed to the table name.
whereclause The filter clause (optional) which limits the rows deleted in terms of one or more
filter specifications. See the syntax for the where clause for further information.

Results
The required (filtered) rows in the nominated table are deleted.

Remarks
The deletion occurs within a transaction frame which must be explicitly committed or rolled back.

The WHERE clause is optional, and if omitted will cause every row in the table to be deleted. A faster
equivalent for this option is the Truncate command.

Examples
The following command deletes all rows in the table with row 1D less than 10, and commits the results :

DELETE fred WHERE ID < 10;
COMMIT;

See also
Data Extraction and Manipulation

SQL Command Reference

Disconnect

The Disconnect command disconnects the current session - the session becomes immediately unusable.

DISCONNECT

Prerequisites
A valid session must exist.

Variants
None.

Qualifiers and Parameters
None.

Results
The session is disconnected.

Remarks
Any open transaction frames are automatically rolled back.

See also
User Manipulation

SQL Command Reference

Dismount

The Dismount command dismounts the database.

DISMOUNT

Prerequisites
The database must currently be mounted.

Variants
There are no variants to the command; the database on which the command acts is implied in terms of the
database operational rules. See Mount Modes for further information on Lava Database operational modes.

Qualifiers and Parameters
None.

Results
The database is dismounted.

Remarks
If in client mode (the default mode of operation), the client database is dismounted and discarded. A client
database cannot be re-mounted.

If in Exclusive mode, the database currently mounted is dismounted, and placed in a mountable state. The
database can subsequently be re-mounted in either exclusive or server mode.

See also
Database Manipulation

SQL Command Reference

Distribute

The Distribute command distributes a schema or table from the server. For information on distributed tables,
see Distributed Client Operation.

DISTRIBUTE SCHEMA schemaname
DISTRIBUTE TABLE tablename

Prerequisites
The session must have UPDATE privilege on any server tables nominated or implied.

Variants
None. The Distribute always executes on the server.

Qualifiers and Parameters
schemaname The name of the schema to be distributed.
tablename The name of a single table to be distributed. If the table does not belong to the
current schema, the appropriate schema name must be prefixed to the table name.

Results
All tables in the nominated schema are distributed (DISTRIBUTE SCHEMA\) or the single table nominated is
distributed (DISTRIBUTE TABLE).

Remarks
In both the case of the DISTRIBUTE SCHEMA and the DISTRIBUTE TABLE options, if the stated schema
does not exist on the client, it is created prior to distributing the table.

If a table nominated or implied by the Distribute command has already been distributed to the client database
from which the current session is operating, the distribution request is ignored.

The command is indivisible - on returning from the command the distribution request has been fully completed,
and the nominated tables are present in distributed form on the client database.

Once the distribution request has been completed, all nominated tables are present on the local client database
and any data requested from these tables is retrieved locally without reference to the server. Updates to the
tables occurs locally and are then distributed to the server.

For more detailed information on the operation of distributed tables, see Distributed Client Operation.

Examples
Distribute a schema from the server :
DISTRIBUTE SCHEMA fredschema;
Perform a select on one of the tables contained in the schema :
SELECT * FROM fred;
The data in the above select is retrieved locally; no communication to the server occurs.

See also
Schema Manipulation, Table Manipulation

SQL Command Reference

Drop schema

The Drop Schema command drops an entire schema, including all objects belonging to the schema.
DROP SCHEMA schemaname

Prerequisites
The session must have DROP privilege on the nominated schema.

There may be no locks on any tables belonging to the schema.

Variants

None. The location of the schema can always be uniquely determined as schema names are required to be
unique across the database. Therefore, if the schema is located only on the client database, the command is
executed on the client. If the schema is located only on the server database or is local in distributed form, the
command is executed on the server. For information on distributed schemas, see Distributed Client Operation.

Qualifiers and Parameters
schemaname The name of the schema to be dropped.

Results
The nominated schema is dropped.

Remarks
If any tables in the nominated schema currently have locks, the drop request will be denied.

If the schema is distributed, the drop request will effectively execute on both server and client - the request will
first be executed on the server to determine validity, and if the drop succeeds on the server it will be executed on
the client. The result is that the nominated schema ceases to exist both on the server and on the client.
Examples

Drop the schema fredschema :

DROP SCHEMA fredschema;

See also
Schema Manipulation

SQL Command Reference

Drop sequence

The Drop Sequence command is listed as future provision, and is not available in the current release of the
Lava SQL engine.

The Drop Sequence command drops a sequence in the current schema.
DROP SEQUENCE sequencename

Prerequisites
The session must have DROP privilege on the schema to which the sequence belongs.

Variants
None. The location of the sequence is determined in terms of the fact that sequence names are unique within a
schema, and the command is executed on either client or server depending on the origin of the sequence.

Qualifiers and Parameters
sequencename The name of the sequence to be dropped.

Results
The sequence is dropped.

Remarks
If the sequence originates on the server, it is dropped on both server and client.

Future enhancement

The Drop Sequence command is specified for future enhancement of the Lava Database, and will only be
available in release 5.0 of the kernel and SQL engine. See Lava Kernel Releases for the planned release
schedule.

Examples
DROP SEQUENCE fredsequence;

See also
Miscellaneous Statements and Clauses

SQL Command Reference

Drop relation

The Drop Relation command drops a relation.
DROP RELATION BETWEEN PARENT parentname AND childname

Prerequisites
The session must have DROP privilege on the schema to which the relation belongs.

Variants
None. Relations can only be defined on the server.

Qualifiers and Parameters
parentname The name of the parent table for the relation
childname The name of the child table for the relation

Results
The relation is dropped.

Remarks

The parent (one table in a one : many relation) and child (many table in a one : many relation) tables must be
correctly specified in order for the relation to be correctly identified - this is in order to ensure that the correct
relation is specified in all cases.

Once the relation is dropped, any constraints implied on table updates by the relation no longer apply.
No table data is affected by the dropping of the relation.
Examples

In the example below, the constraint relation between Sys_Event_Type and Sys_Event_Log is dropped,
following which a particular row in the Sys_Event_Type table can be deleted regardless of implied links to this
entry from the Sys_Event_Log table. The relation is then re-established.

ALTER SESSION SCHEMA event;

DROP RELATION BETWEEN PARENT Sys_Event Type AND Sys Event_Log;

DELETE Sys_Event_Type WHERE ID = 101;

CREATE RELATION FROM PARENT Sys Event Type TO Sys_Event_Log
COLUMN Event_Type id CONSTRAINT RESTRICT;

See also
Table Manipulation

SQL Command Reference

Drop synonym / Drop alias

The Drop Synonym and Drop Alias commands are equivalent alternatives of the command to drop the alias for
a table.

DROP SYNONYM tablealias
DROP ALIAS tablealias

Prerequisites
The session must have DROP ALIAS privilege on the schema in which the alias is defined.

Variants
None. The Drop Synonym command always executes on the server.

Qualifiers and Parameters
tablealias The alias to be dropped.

Results
The nominated alias is dropped.

Remarks
The Drop Alias command has no effects except that the alias is no longer available.

Examples
DROP ALIAS errorlog;

See also
Table Manipulation

SQL Command Reference

Drop table

The Drop Table command drops a Lava table.
DROP TABLE tablename;

Prerequisites
The session must have DROP privileges on the nominated table.

There may be no active locks on the table to be dropped.

Variants

None. Since the table name must be unique within a schema, the table is identified in terms of origin from its
definition and is dropped either on the client or the server database depending on point of definition and
distribution status.

Qualifiers and Parameters
tablename The name of the table to be dropped. If the table does not belong to the current
schema, the appropriate schema name must be prefixed to the table name.

Results
The nominated table is dropped, together with any data contained in the table.

Any relations to the nominated table are dropped as a result of a mandatory component of the relation no longer
existing.

Remarks

The table is identified from the nominated table name. If the table is a client table, the drop is executed on the
client. If the table is either located only on the server, or is distributed to the client, the command is executed on
the server. If the server drop succeeds, the distributed copy of the table on the client is dropped on the client
database.

All data present in the table at the time of the drop is irretrievably lost.

Dropping a table does not result in transaction frame data - no rollback option to recover the table or table data
is available subsequent to dropping a table (the drop action does not affect current transaction frames in any
way, as any pending updates to the table in question would have caused active locks on the table, preventing it
from being dropped).

Examples

DROP TABLE fredschema.fred;

See also
Table Manipulation

SQL Command Reference

Drop user

The Drop User command drops a current user account.

DROP USER username

Prerequisites
The session must have DROP USER privilege.

The account to be dropped may not be the account on which the current session is formed.
The default system account (SYSTEM,; created on creating the database) cannot be dropped.

Variants
None. The Drop User command is always executed on the server.

Qualifiers and Parameters
username The name of the user account to be dropped.

Results
The nominated user account is dropped.

Remarks
After dropping a user account all information contained in the user account (password, privileges) is
irretrievably lost.

If the nominated account is the only account (with the exception of the SYSTEM account) able to access any
particular schema(s), those schemas will be inaccessible until another account is created with appropriate
privilege or a currently existent account is granted appropriate privileges from the SYSTEM account.
Examples

DROP USER fred;

See also
User Manipulation

Drop view

SQL Command Reference

The Drop View command is provision for future enhancement; the command is not available in the current

release of the database.

Prerequisites
None - future provision

Variants
None - future provision

Qualifiers and Parameters
None - future provision

Results
None - future provision

Remarks
None - future provision

Future enhancement

This command will be available in release 5.0 of the Lava SQL engine. See Lava Kernel Releases for the

planned release schedule.

Examples
None - future provision

See also
Table Manipulation

Grant role

SQL Command Reference

The Grant Role command is provision for future enhancement; the command is not available in the current

release of the database.

Prerequisites
None - future provision

Variants
None - future provision

Qualifiers and Parameters
None - future provision

Results
None - future provision

Remarks
None - future provision

Future enhancement

This command will be available in release 5.0 of the Lava SQL engine. See Lava Kernel Releases for the

planned release schedule.

Examples
None - future provision

See also

Grant Privilege, User Manipulation

SQL Command Reference

Grant privilege

The Grant Privilege command grants a particular privilege to a nominated user account.
GRANT privilege / all ON targettype targetname TO username;

Prerequisites
The session must have GRANT privilege on the schema named or implied in the Grant action.

Variants
None. Grant commands are always executed on the server.

Qualifiers and Parameters
privilegeThe privilege to be granted. This may be a specific privilege, or the ALL qualifier grants all
available privileges on the nominated schema or table. For a list of available

privileges, see Lava Privileges.

targettype The target of the privilege may be :
SCHEMA The nominated target is a schema - all objects contained in the
schema are included in the privilege granted.
TABLE The nominated target is a table - only the specified table is affected

by the privilege granted.
targetname The name of the target entity. If the target type was SCHEMA, the targethame must
specify a valid schema on the server. If the target type was TABLE, the targetname
must specify a valid table on the server. If this table does not belong to the current
schema, the appropriate schema name must be prefixed to the table name.
username The name of the user account which is to be granted the specified privilege.

Results
The nominated user account is granted the privilege(s) stated in the command.

Remarks
The privilege will only be accorded the user account on the next connection to the server after the grant has been
executed.

If the Grant is executed on a SCHEMA, all objects (table, alias, sequence) are included in the grant. In
addition, any future objects added to the schema of whatever kind are automatically included in the grant
regardless of when they are added.

If a user is to be granted access to the greater number of objects in a particular schema, and the lesser number of
objects are to be withheld, it may be more efficient to Grant access to the entire schema, then Revoke access to
only those objects for which permission is to be withheld.

Future enhancement
The ability to define Roles and allocate Roles to user accounts rather than individual privileges will be added in
a forthcoming release of the Lava Database. See Lava Kernel Releases for the planned release schedule.

Examples

GRANT ALL ON SCHEMA fredschema TO fred;
REVOKE DROP ON SCHEMA fredschema FROM fred;
REVOKE UPDATE ON TABLE products FROM fred;

See also
Lava Privileges, User Manipulation

SQL Command Reference

Group by Clause

The Group By clause is used in Select statements to group aggregate results. The Group by clause is optional -
if omitted, an aggregate clause provides the aggregate information across the entire select range. If specified,
results are grouped according to the specified group columns.

The general syntax for the group by clause is

GROUP BY collumn_1, column_2, ..., column_n

where column_1, column_2, ..., column_n are the set of columns which define the grouping
criterion.

For an illustration of grouped aggregates results, see the examples at the end of this clause, or the more elaborate
examples in Appendix 111 : SQL Examples.

The following aggregate functions are currently supported :

COUNT Calculates the number of entries (result rows) scanned in processing the Select
statement
SUM Calculates the numeric sum of the column across all entries scanned
AVG Calculates the arithmetic average of the column across all entries scanned
MIN Finds the smallest arithmetic or alphabetic value across all entries scanned
MAX Finds the largest arithmetic or alphabetic value across all entries scanned
Remarks

The grouping columns do not have to be selected in the column list of the Select statement.

If, however, a column is selected without an aggregate function, that column should be specified in the Group
By list - see the simple example below for an illustration of this point.

An Order By clause may be added to sort the aggregate results in a desired sequence.
Future enhancement

The DISTINCT clause will be supported in release 5.0 of the Lava SQL engine. See Lava Kernel Releases for
the planned release schedule.

Examples
The following simple example will calculate the sum of invoiced amounts on an invoice detail table, and group
the results by customer :

SELECT SUM(amount), Customer FROM InvDetail GROUP BY Customer;

For a more detailed worked example which lists a grouped aggregate, see Grouping aggregates, subqueries in
the SQL Example appendix.

See also
Select statement, Data Extraction and Manipulation

SQL Command Reference

Insert

The Insert command allows insertion of new rows into an existing table.

INSERT INTO tablename (columnlist) VALUES (valuelist)
INSERT INTO tablename (columnlist) selectstatement

Prerequisites
The session must have INSERT privilege on the nominated table.

In the SELECT form of the command, the session requires READ privilege on any tables accessed in the select
statement.

Variants

None. The location (client or server) for the nominated table may be identified from the fact that table names
are unique within a schema. The command is either executed in distributed mode on the client if the table is
distributed, or on server if the table is not distributed. If the table is a client table, the command is executed on
the client.

Qualifiers and Parameters

tablename The name of the table into which rows are to be inserted. If the table does not belong
to the current schema, the appropriate schema name must be prefixed to the table
name.

columnlist A list of columns to be set in each row added to the nominated table, separated by

commas. For further information on the column list, see Column List.

valuelist In the VALUES form of the command, a list of values corresponding to the list of columns
above, separated by commas. For further information on the value list, see Value
List Clause. In this form of the command, only one row is inserted into the
nominated table.

selectstatement In the SELECT form of the command, a select statement of arbitrary complexity
specifying the values to be set for the columns specified in the column list. For
further information on this clause, see Select Statement. In this form of the
command, any number of rows from 0 through many thousands of rows may be
inserted into the nominated table with a single command.

Results
A number of rows (0 or more, depending on the form of the command) are inserted into the nominated table
with specified columns set to stipulated or implied values. Non-specified columns are left blank or 0.

Remarks
The number of columns in the column list and the value list must be equal. Similarly, for the SELECT form, the
number of columns in the select column list must be equal to the insert column list.

The specified columns and the stipulated (value list) values or implied (select) values are associated one-for-one
in the appropriate list; in other words the first entry in the insert column list matches with the first value in the
value list and so on.

The data types of the insert column and the stipulated or implied value column do not have to be the same. The
SQL engine will perform the best possible data conversion between the value and the insert column type where
a conversion is required.

The inserted rows will be contained in a transaction frame, and will only be written to the nominated table on
execution of a Commit command. If a Rollback is executed or the session is disconnected before a Commit is
issued, the data will be discarded.

SQL Command Reference

For non-Raw tables, the Lava kernel will automatically assert the ID column of each inserted (added) row to the
correct row 1D value - the user may not set this column. If rows are to be placed at a particular predetermined
row in the nominated table, the Update command should be used instead.

The actual rows used for the inserted data depend on (1) whether the nominated table was created with the
RECLAIM attribute set, in which case any deleted rows found in the table will first be used before the table
extended, or (2) if RECLAIM is not specified for the nominated table or there are no free (deleted) rows, the
row used will be the next unused row, i.e. the next row after the last used row in the table. See Create Table for
more information on table attributes.

Examples
INSERT INTO fred (nhame, ownership) VALUES (“Bloggs’, 23.56);

INSERT INTO fred (name, ownership)

SELECT
a.name, b.ownership

FROM
customer a, ownership b

WHERE
a.id = b.customer_id AND
b.ownership BETWEEN 30 AND 45;

See also
Data Extraction and Manipulation

SQL Command Reference

Mount

The Mount command mounts an existing Lava Database.
MOUNT mountmode FOLDER databasefolder;

Prerequisites
A valid, current Lava Database must exist at the folder specified.

The nominated database may not currently be mounted.

Variants
None.

Qualifiers and Parameters
mountmode The only currently supported mount mode is EXCLUSIVE. See Mount modes for
further information.
databasefolder A full filepath specifying the location of an existing, unmounted Lava Database.

Results
The database at the nominated folder is mounted.

Remarks
In order to operate in exclusive mode, which allows restore of backups, the server must be dismounted and
mounted in exclusive mode. See Restore for information on the restoration of backups.

On conclusion of the restore operation, the database should be dismounted, after which the Lava Server can be
re-mounted and normal operation resumed.

Future enhancement

The ability to mount a database in StandbyServer mode, to be included by release 5.0 of the Lava kernel, will
provide for a hot standby database to be linked to the Lava Server in order to shadow every transaction
performed to the server. See Lava Kernel Releases for the planned release schedule.

Examples
MOUNT EXCLUSIVE FOLDER s:\lava\primary;

See also
Database Manipulation

SQL Command Reference

Order by Clause

The Order by clause is an optional clause which may be specified for any Select statement to sort the results by
one or more columns, ascending or descending.

The simplest form of the Order by clause is :
ORDER BY Column_1, Column_2, ..., Column_3

Greater control over the result may be obtained by using the ASC and DESC qualifiers in order to achieve
ascending or descending order on individual columns, as follows :

ORDER BY Column_1 ASC, Column_2 DESC
If the ASC and DESC qualifiers are omitted for any column, the default is Ascending (ASC).

Remarks

Although it is permissible to specify an Order By clause on a subquery, in the general case this will only have
the effect of slowing down the encapsulating command as an extra sorting phase will be executed for each
subquery execution, which in almost all cases will not affect the overall result. It will certainly not change the
content of the result, and in most cases a specific final result order can more effectively be achieved by
specifying an Order By clause on the outermost Select.

Sort columns may be of any datatype. There is, however, a limitation to functionality with variable length
datatypes - in this case, the sort is performed taking into account the base portion of the column only; the
variable portion is not considered for sort purposes.

Any number of sort columns may be specified, and the number of columns in the sort specification will have
very little affect on the sort speed.

The sort algorithm used is a near- in place algorithm which is order n log n, i.e. about as fast as you can go.
Examples
SELECT CustomerName FROM Customers ORDER BY CustomerName

See also
Group By, Select statement, Data Extraction and Manipulation

SQL Command Reference

Rename schema

The Rename Schema command renames the nominated schema.

RENAME SCHEMA schemaname TO newname;

Prerequisites
The session must have ALTER privilege on the nominated schema.

Variants
None. The schema can be uniquely identified and is modified on the appropriate database.

Qualifiers and Parameters
schemaname The name of an existing schema.
newname The new name for the schema.

Results
The schema is renamed to newname.

Remarks
The schema is immediately renamed. There is no rollback option.

See also
Schema Manipulation

SQL Command Reference

Rename sequence

The Rename Sequence command renames the nominated sequence.
RENAME SEQUENCE sequencename TO newname;

Prerequisites
The session must have ALTER privilege on the schema to which the sequence belongs.

Variants
None. The sequence can be uniquely identified and is modified on the appropriate database.

Qualifiers and Parameters
sequencename The name of an existing sequence. If the sequence does not belong to the current
schema, the appropriate schema name must be prefixed to the sequence name.
newname The new name for the sequence.

Results
The sequence is renamed to newname.

Remarks
The sequence is immediately renamed. There is no rollback option.

See also
Miscellaneous Statements and Clauses

SQL Command Reference

Rename synonym / Rename alias

Rename Synonym and Rename Alias are equivalent alternative commands which renames the nominated alias.

RENAME SYNONYM aliasname TO newname;
RENAME ALIAS aliasname TO newname;

Prerequisites
The session must have ALTER privilege on the schema to which the alias belongs.

Variants
None. The alias can be uniquely identified and is modified on the appropriate database.

Qualifiers and Parameters

aliasname The name of an existing alias. If the alias does not belong to the current schema, the
appropriate schema name must be prefixed to the alias name.
newname The new name for the alias.

Results
The alias is renamed to newname. The alias will continue to refer to the original table for which the alias was
defined.

Remarks
The alias is immediately renamed. There is no rollback option.

See also
Table Manipulation

SQL Command Reference

Rename table

The Rename Table command is an alternative syntax to the ALTER TABLE ... RENAME command. See
Alter Table for information on this command.

RENAME TABLE tablename TO newtablename

Qualifiers and Parameters

tablename The tablename parameter specifies the table to be renamed. If the table is
not in the session’s current schema, a schema prefix is required to fully
identify the table.

newtablename The new table name for the nominated table.

Results
The nominated table is renamed to newtablename. See Alter Table for more information on this command.

See also
Alter Table, Table Manipulation

SQL Command Reference

Rename user

The Rename User command renames the nominated user account.

RENAME USER username TO newname;

Prerequisites
The session must database wide ALTER privilege.

Variants
None. The user account can only exist on the server.

Qualifiers and Parameters
username The name of an existing user account.
newname The new name for the user account.

Results
The user account is renamed to newname.

Remarks
The user account is immediately renamed. There is no rollback option. The user account will retain all current
attributes and privileges.

See also
User Manipulation

Rename view

SQL Command Reference

The Rename View command is provision for future enhancement; the command is not available in the current

release of the database.

Prerequisites
None - future provision

Variants
None - future provision

Qualifiers and Parameters
None - future provision

Results
None - future provision

Remarks
None - future provision

Future enhancement

This command will be available in release 5.0 of the Lava SQL engine. See Lava Kernel Releases for the

planned release schedule.

Examples
None - future provision

See also
Table Manipulation

SQL Command Reference

Restore

The Restore command restores an existing backup file.

RESTORE BACKUP backupfile
Prerequisites
The session must have RESTORE privilege on the schema to be restored. In addition, the session must have
DROP privilege on every table to be restored - any table for which the session does not have DROP privilege
will not be restored. If the schema to be restored does not yet exist in the mounted database, the session must
have database wide CREATE privilege.
The database must be mounted in Exclusive mode - see Mount mode.for information on Exclusive mount.

A backup folder for the session must have been asserted - see Alter Session.

Variants
None. The backup is always performed to an Exclusive-mount database.

Qualifiers and Parameters
backupfile The backup file to be restored. This must be located in the current backup folder -
see Alter Session for information on setting the current backup folder.

Results
The schema nominated in the backup file is restored from the backup.

Remarks
The mount mode must be Exclusive.

The default file type (file extension) for Lava backup files is .Ibs (Lava Backup Set).
All tables nominated in the backup file will be dropped before being restored.
Once the restore action is complete, the database may be dismounted and re-mounted in Server mode.
Examples
Assert a backup folder and restore the backup fredbackup :
ALTER SESSION BACKUP FOLDER g:\lava\backup;
RESTORE BACKUP fredbackup;

See also
Alter Session, Backup, Schema Manipulation

SQL Command Reference

Revoke privilege

The Revoke Privilege command revokes a particular privilege from a nominated user account.
REVOKE privilege / all ON targettype targetname FROM username;

Prerequisites
The session must have GRANT privilege on the schema named or implied in the Revoke action.

Variants
None. Revoke commands are always executed on the server.

Qualifiers and Parameters
privilege The privilege to be revoked. This may be a specific privilege, or the ALL qualifier revokes
any privileges currently granted the user on the nominated schema or table. For a list
of available privileges, see Lava Privileges.

targettype The target of the privilege may be :
SCHEMA The nominated target is a schema - all objects contained in the
schema are included in the privilege revoked.
TABLE The nominated target is a table - only the specified table is affected

by the privilege revoked.
targetname The name of the target entity. If the target type was SCHEMA, the targethname must
specify a valid schema on the server. If the target type was TABLE, the targetname
must specify a valid table on the server. If this table does not belong to the current
schema, the appropriate schema name must be prefixed to the table name.
username The name of the user account from which the specified privilege is to be revoked.

Results
The privilege(s) stated in the command are revoked from the nominated user account.

Remarks
The privileges will only be revoked from the user account on the next connection to the server after the revoke
has been executed.

If the Revoke is executed on a SCHEMA, the privilege is revoked on all objects (table, alias, sequence) within
the schema. In addition, the privilege is automatically revoked on any future objects of whatever kind added to
the schema regardless of when they are added.

If a user is to be granted access to the greater number of objects in a particular schema, and the lesser number of
objects are to be withheld, it may be more efficient to Grant access to the entire schema, then Revoke access to
only those objects for which permission is to be withheld.

Future enhancement
The ability to define Roles and allocate Roles to user accounts rather than individual privileges will be added in
a forthcoming release of the Lava Database. See Lava Kernel Releases for the planned release schedule.

Examples

GRANT ALL ON SCHEMA fredschema TO fred;
REVOKE DROP ON SCHEMA fredschema FROM fred;
REVOKE UPDATE ON TABLE products FROM fred;

See also
Lava Privileges, User Manipulation

SQL Command Reference

Rollback

The Rollback command performs a rollback action on open transaction frames for the current session.

ROLLBACK
ROLLBACK subframe

Prerequisites
None. The prerequisites apply to the transactions that comprise the transaction frame on which the rollback is to
be performed; the rollback itself has no prerequisites.

Variants
None. The Rollback command always acts on the current session.

Qualifiers and Parameters
subframe The name of an existing transaction subframe - see Savepoint

Results
The transaction frame is partially rolled back if a subframe is specified, and fully rolled back if no subframe is
specified.

Remarks
If a Savepoint is executed before any modifications are performed in the session, specifying that savepoint as
the subframe to be rolled back is equivalent to specifying rollback without a subframe.

If a subframe is specified which is partway through the current transaction frame, the rollback does a partial
rollback from that savepoint onward - effectively what this does is to remove the subframe from the currently
pending transaction frame.

Examples

In the following example, a savepoint is created partway through a sequence of updates. A rollback is
performed specifying that subframe, subsequent to which further updates are performed and a complete commit
is executed.

DELETE fred WHERE ID = 5;

SAVEPOINT newsubframe;

DELETE fred WHERE ID = 6;

ROLLBACK newsubframe;

UPDATE fred SET name = “fred” WHERE ID = 7;
COMMIT;

In the above sequence, the transactions that will be committed to the table are :
1. The initial delete (for ID = 5)
2. The final update (for ID =7)

The second delete is rolled back, and is not committed to the table.

See also
Commit, Transaction Statements

SQL Command Reference

Savepoint

The Savepoint command creates a transaction subframe which may be used to perform partial commit or
rollback actions.

SAVEPOINT subframe

Prerequisites
None. The prerequisites apply to the transactions that comprise the transaction frame within which the
savepoint is to be defined; the savepoint action itself has no prerequisites.

Variants
None. The Savepoint command always acts on the current session.

Qualifiers and Parameters
subframe The name of the transaction subframe (savepoint) to be created.

Results
A transaction subframe is created (a nested transaction frame) which allows nested commit or rollback actions.

Remarks

It is permissible to create a savepoint before any transactions (updates) have been issued, but this is not
necessary. On executing the first update (delete, update, insert) command, the database kernel will
automatically create a transaction frame, which may be used for complete commit or rollback actions.

It is only necessary to create a nested transaction frame (subframe) if portions of the transaction sequence may
have to be rolled back individually in the case of a validation failure or other reason.

Regardless of how many savepoints have been created within a given transaction frame, executing a commit or
rollback without nominating any of these savepoint names will commit or roll back the entire transaction frame.

If subframes are created sequentially without performing any interim subframe commits, this will result in
deeply nested transaction frames which will result in a slower complete commit when the entire transaction is
committed. However, the difference is not particularly significant and although it is good practice to close off
each subframe once the conditions for the subframe have been validated, it is not essential to do so.

Examples

In the following example, a savepoint is created partway through a sequence of updates. A rollback is
performed specifying that subframe, subsequent to which further updates are performed and a complete commit
is executed.

DELETE fred WHERE ID = 5;

SAVEPOINT newsubframe;

DELETE fred WHERE ID = 6;

ROLLBACK newsubframe;

UPDATE fred SET name = “fred” WHERE ID = 7;
COMMIT;

See also
Commit, Rollback, Transaction Statements

SQL Command Reference

Select, Select Statement

The Select statement is used primarily to retrieve data in the form of a result set from one or more tables.

In general, the Select statement may be used in a number of instances. It can be used as a standalone select, in
which case the select creates a result set which is returned to the user. Select statements can also be used in the
form of subqueries within Insert and Create Table statements to substitute for coded value or column lists.
Finally, select statements may be used as subqueries within select statements in certain instances where
otherwise specification of a column, a table or a value would be used.

The simplest form of the select statement is as follows :

SELECT
Column list - Select

FROM
Table list

In most cases, this will be augmented by a Where clause, as follows :

SELECT

Column list - Select
FROM

Table list
WHERE

Where Clause
In addition, the following clauses may be appended to a select statement :

ORDER BY
Order by Clause

The Order by clause sorts the result set in terms of the specified columns. See the Order by Clause for
further information.

GROUP BY
Group by Clause

The Group by clause allows the compilation of aggregate values, grouped in terms of the columns specified.
See the Group by Clause for further information.

The final two clauses, Order by and Group by, may be used in conjunction to order an aggregate result set.

Prerequisites
The session must have SELECT privilege on any table used within the select or any subqueries to the select.

Variants
The select command is executed by default on the appropriate location (client or server) depending on the tables
included in the select, and the distribution status of these tables.

If all the tables nominated in the select (including any subqueries used in the select statement) have been
distributed to the client, the select statement is executed on the client by default.

If any tables (1 or more) used in the select have not been distributed to the client, the select will be executed on
the server - regardless of any tables which have been distributed to the client.

SQL Command Reference

As the system tables (with the exception of the user table, Sys_Users) are not distributed to the client, any select
performed on a system table will be executed on the server. In this one case, it is possible to direct the SQL
engine to execute the query on the client.

SELECT [CLIENT] * FROM SYS_OBJECTS

In general, however, it is not possible to force the SQL engine to execute a statement on the client which it has
determined should be executed on the server. The reason for this is that if even one table nominated in the
select has not been distributed to the client, formulating the result set is not possible on the client, and the select
must be executed on the server.

It is possible to force a select statement to execute on the server, as follows :
SELECT [SERVER] * FROM fred

Since the location of the tables in the above case cannot be validated on the client, it is possible to force a select
to be evaluated on the server which then fails as a result of one or more of the nominated tables not existing on
the server (but only on the client). The onus is on the user to ensure that selects forced to server execution will
validate correctly in terms of table location.

Qualifiers and Parameters
The following items are all documented comprehensively in individual clause descriptions. The brief
introductions to the clauses may be expanded by following the hyperlinks.

Column list A list of columns from any of the tables in the table list. Computations,
aggregate functions and subqueries are permitted.

Table list A list of tables to be queried. Tables constructed from subqueries are
permitted.

Where Clause An optional clause in the case of single-table queries, the Where clause is

mandatory for queries on more than one table. It specifies joins between
tables in the table list, as well as any filters to be applied to the results.

Order by Clause An optional clause providing for single- or multi-column sorts on the result
set.
Group by Clause An optional clause used only in the case of aggregate functions applied to

the select column list, to group the aggregate results.

Results
The Select query builds a result set in accordance with the select column list and the conditions in the Where
clause. The result set is returned in the form of a Virtual Lava Table, placed in the current schema.

Remarks

The table is named SQLresult, and can be used in further Select queries. As with any other Lava Table, the
SQLresult table can be renamed or dropped. Due to the fact that this table is unconditionally a Raw table, rows
cannot be deleted from the table, but all other table data operations are supported.

If the result table is not renamed, it will be overwritten on execution of the next Select statement. The result is
always returned in a table named SQLresult, with the implication that if the last result table has not been
renamed, it will be dropped and the new result table will take its place.

The Lava select requires, for selects involving more than one table, that every table be specified in a valid join
with another table in the select. In other words, if a table is included in the select, the table must be joined to at
least one other table in the select. If any table in the select is found to have no joins to the other tables in the
select, the select will be disallowed and will return an error.

Examples
A simple select statement is provided below :

SQL Command Reference

SELECT * FROM SYS_OBJECTS WHERE ID < 20;

For further examples, see the section Appendix 111 : SQL Examples

See also
Group by, Order by, Column list - Select, Where Clause, Subqueries, Data Extraction and Manipulation

Set

SQL Command Reference

The Set command is provision for future enhancement; the command is not available in the current release of

the database.

Prerequisites
None - future provision

Variants
None - future provision

Qualifiers and Parameters
None - future provision

Results
None - future provision

Remarks
None - future provision

Future enhancement

This command will be available in release 5.0 of the Lava SQL engine. See Lava Kernel Releases for the

planned release schedule.

Examples
None - future provision

SQL Command Reference

Subqueries

A subquery is a form of the SELECT statement which is nested within another SQL statement, the
encapsulating statement, and bounded by parentheses. The row(s) returned by the subquery are used by the
encapsulating statement in the place of a value, column or data table.

Subqueries may be used for the following purposes:

. to define the set of rows to be inserted into the target table of an INSERT or CREATE TABLE
statement
to define a value to be assigned to a column in an UPDATE statement
to provide values for conditions in WHERE clauses of SELECT, UPDATE, and DELETE statements
to define a table to be operated on by an encapsulating query. In this case the subquery replaces the
conventional table specification in the FROM clause of a Select statement.

The following statement prototypes illustrate typical uses of subqueries.

CREATE TABLE

table_1 (columnlist)
AS SELECT

columnlist
FROM

table 2

UPDATE
table 1 alias 1
SET
column = (
SELECT
expression
FROM
table_2
WHERE
alias_1.column = table 2.column

SELECT
columnlist
FROM
table_ 1 alias 1
WHERE
column_1 = (
SELECT
expression
FROM
table 2
WHERE
alias_1.column = table_2_column

)

DELETE

table 1 alias 1
WHERE

column = (

SQL Command Reference

SELECT
expression
FROM
table 2
WHERE
alias_1.column = table_2.column

)

In principle, a subquery is used to obtain a result set where it is easier - or essential - to phase a select
independently of the encapsulating statement. In some cases, such as an Update statement, subqueries are the
only way to access values not directly related to the table being updated. In other cases, such as complex SQL
statements, subqueries are often a way to simplify the overall statement.

Remarks

Subqueries used to substitute for tables in the FROM clause of a Select statement may not use correlation
variables linked to the encapsulating statement, as these queries are executed first of all in evaluating a Select
statement - therefore, correlation variables cannot be evaluated since none of the other tables in the
encapsulating statement are current when the subquery is being evaluated.

Broadly speaking, subqueries fall in two categories : correlated and non-correlated. Non-correlated queries are
executed once only (as in the above case, with replacement of a FROM table entry), whereas correlated queries
are executed once for every row processed by the encapsulating statement.

A correlated subquery is a subquery that is evaluated once for each row processed by
the parent statement. The parent statement can be a SELECT, UPDATE, or DELETE
statement. The following examples show the general syntax of a correlated

subquery:

A subquery can itself contain one or more subqueries. There is no explicit limit on the number or depth of
subqueries, but it is worth remembering that deeply nested correlated subqueries do perform slower than the
equivalent flattened query.

See also
Appendix I11 : SQL Examples, Data Extraction and Manipulation

SQL Command Reference

Lava pseudo-table

The Lava pseudo-table is used where a clause requires reference to a table but the specific instance does not
require an actual table

SELECT expression FROM Lava
Remarks
The Lava pseudo-table may be used with any non-table related expression, including all the reserved
expressions and functions.
Example
SELECT PI * 4 FROM Lava
SELECT TIME FROM Lava

See also
Reserved expressions

SQL Command Reference

Table List Clause

Table Spec
[schema.]tablename

The basic form of the table list is as follows :
table 1, table 2 ... table n
Any of the tables may be a subquery :
table 1,
EEE%EC; * FROM system.sys objects WHERE ID BETWEEN 20 AND 30),

In the above example, the second table is constructed from the Sys_Objects table from the rows 20 through 30.

The full syntax of the select table list may be found in the section SQL Syntax Specification.

Remarks
The subquery table may be specified in terms of any valid select.

The table subquery may not be a correlated subquery as it is always evaluated first, rendering any form of
correlation impossible.

A table query may return any number of rows, as the result is treated as for any other table.

Subqueries may be nested to any depth. As table subqueries are evaluated first, and only once, there is
relatively little penalty to complex and deeply nested queries in this position.

See also
Select statement, Subquery, Data Extraction and Manipulation

SQL Command Reference

Truncate

The Truncate command truncates a Lava table, effectively deleting all rows in the table.

TRUNCATE TABLE tablename

Prerequisites
The session must have TRUNCATE privilege on the nominated table.

Variants
None. The command is executed on the specified table, which must be unique, and therefore fully determines
how and where the truncation takes place.

Qualifiers and Parameters
tablename The name of the table to be truncated. If the table is not in the current schema, the
appropriate schema name must be prefixed to the table name.

Results
The nominated table is truncated - i.e. all data rows in the table are deleted.

Remarks

The Truncate command does not result in transaction frame data - the loss of data is of immediate effect and no
rollback action is possible on the deleted rows.

Examples

TRUNCATE TABLE fred;

See also
Table Manipulation

Undelete

SQL Command Reference

The Undelete command is provision for future enhancement; the command is not available in the current

release of the database.

Prerequisites
None - future provision

Variants
None - future provision

Qualifiers and Parameters
None - future provision

Results
None - future provision

Remarks
None - future provision

Future enhancement

This command will be available in release 5.0 of the Lava SQL engine. See Lava Kernel Releases for the

planned release schedule.

Examples
None - future provision

See also

Data Extraction and Manipulation

SQL Command Reference

Update

The Update command updates rows as specified in the nominated table, optionally filtered using a Where
clause.

UPDATE tablename SET columnvaluelist WHERE Where Clause

Prerequisites
The session must have UPDATE privilege on the nominated table.

Variants
None. The command is executed on the specified table, which must be unique, and therefore fully determines
how and where the update takes place.

Qualifiers and Parameters
tablename The name of the table to be updated. If the table is not in the current
schema, the appropriate schema name must be prefixed to the table name.

The following items are all documented comprehensively in individual clause descriptions. The brief
introductions to the clauses may be expanded by following the hyperlinks.

columnvaluelist A list of entry pairs comprising a column name and a value to which the
column is to be set. Constant values, computations and subqueries are
permitted in the value clause.

Where Clause The Where clause is optional, and if specified limits the rows to be updated
through use of one or more filters.

Results
The rows in the nominated table, optionally limited by a filter clause, are updated in accordance with a column /
value list.

Remarks
The updated rows are placed in a transaction frame, allowing conditional commit or rollback of the table.

Examples

UPDATE fred SET ownership = 33.5 WHERE ID = 25;

See also
Table Manipulation

SQL Command Reference

Value List Clause

The Value List clause provides for the specification of a list of values to be used in a single-row insert (see
Insert for the encapsulating command syntax)

The general syntax for the value list is as follows :
(value_1, value 2, ..., value n)

Each value may be numeric or string (depending on the corresponding column in the insert clause - see Column
List Clause - Insert) and each value may use operators to arbitrary complexity.

Remarks

Although it is good practice to match the data type of the value specification to the type of the column in the
column list clause, this is not required. If the data type does not match (for example, a numeric value is
specified for a string column) the SQL engine will perform the best possible conversion to comply with the
column data type.

Future enhancement
In release 5.0 of the Lava SQL engine, subqueries will be permitted in any value position to derive the value
from existing table data. See Lava Kernel Releases for the planned release schedule.

Examples

INSERT INTO fred

(name, ownership, stock count)
VALUES

(“joe bloggs’®, 23.565, 433)

INSERT INTO fred
(name, ownership, stock count)
VALUES
(“joe” || “ bloggs”, ((3.575 + 1.1) ~ 0.12) * 24, 433 / 5)

See also
Insert, Column List Clause - Insert, Data Extraction and Manipulation

SQL Command Reference

Where Clause

The Where clause is an optional clause used in delete, update and select statements (with only one table) to
limit the number of rows processed by the statement. If this clause is omitted, the statement processes all rows
in the nominated table(s).

In the case of Select statements where the table list comprises more than one table, the Where clause is no
longer optional. In this case, join conditions are required between all of the tables listed in the table list. This
case is covered separately after the filter cases - see Join conditions below.
Filter conditions
In its simplest form, the Where clause specifies two expressions and a comparison operator, as follows :

expr_1 comparison expr_2
The Where clause may list any number of conditions, separated by a boolean logical :

expr_1 comparison expr_2 AND

expr_3 comparison expr_4 OR

expr_5 comparison expr_6
In the above syntax, as the AND operator has higher precedence than the OR operator, the first two conditions
will be evaluated first, the results will be ANDed together, and the final condition will be evaluated and ORed to
yield the overall result
In order to force a particular logical evaluation, parentheses (arbitrarily nested) may be used :

expr_1 comparison expr_2 AND

(expr_3 comparison expr_4 OR

expr_5 comparison expr_6)}

In the above case, the segment in parentheses will be evaluated first, then the result of the first condition will be
ANDed with this, yielding the overall result.

Subqueries may be used in several ways within the where clause. The first is simply as a replacement for an
expression :

expr_1 comparison (SELECT expr_2 FROM table 2 WHERE where_clause)
An example based on this form could be :

UPDATE fred

SET
bvalid = TRUE
WHERE
stock _count = (
SELECT
SUM(stockcount)
FROM
stocklist
WHERE

owner_id = fred.ID

SQL Command Reference
Note the use of the correlated subquery (owner_id = fred.ID) in the above example.

The second option for a subquery condition is the EXISTS condition :
EXISTS (SELECT expr_2 FROM table_2 WHERE where_clause)

In this form, the condition evaluates as TRUE if at least one row is returned by the subquery, and FALSE
otherwise.

The Exists condition can also be inverted :

NOT EXISTS (SELECT expr_2 FROM table_2 WHERE where_clause)
In this form, the condition evaluates as TRUE if the subquery returns an empty result set, and FALSE otherwise.
Finally, the subquery may be specified as the operand of an IN condition :

expr IN (SELECT expr_2 FROM table 2 WHERE where_ clause)
The IN condition is satisfied (returns TRUE) if the value resulting from the specified expression expr is found in
the result set of the subquery. This subquery must return a result set comprising only one column (but may
return any number of rows).
The IN condition can also be inverted :

expr NOT IN (SELECT expr_2 FROM table_2 WHERE where_clause)
in which case the condition returns TRUE if the value resulting from expression expr is not found in the result
set of the subquery. As for the IN case, the subquery must return a result set comprising only one column (but
may return any number of rows).
Join conditions
If the Where clause forms part of a Select statement, and the Select references more than one table in the Table
list, mandatory join conditions are required for each of the tables referenced. This is to avoid the requirement

for Cartesian product joins, which in the greater majority of cases yield a result set which is meaningless (and
extremely large), and can take extremely long to execute.

If a multi-table select does not specify at least one join condition (to another table in the table list) for each table,
the SQL engine will reject the statement and return an error.

In those cases where some form of Cartesian product is required, (and assuming that the result set will be
manageable both in size and execution time) this may be achieved by specifying an ‘open’ join, which includes
all the rows of the target table through an appropriately stated inequality (such as BETWEEN). Should this
option be exercised, the onus is on the user to ensure that execution of the statement will yield a sensible result -
the Lava SQL engine will allow the statement as a join is in place between the tables (although the join will not
eliminate any of the Cartesian product rows).

In the general case, a join is phrased as follows (see the section on Relational Integrity for more information on
standard Lava relations) :

table 1.ref column = table 2.1ID

As with filter conditions, multiple joins are typically connected using AND conditions, yielding the following
form:

table_1.ref _column
table 2._ref _column

table_2.1D AND
table 3.1D

SQL Command Reference

Note the chaining effect in the above form, where each table in the table list is successively joined to the next
table in order to form a complete join chain.

In certain cases, relations between certain tables are non-mandatory - typically the link to a parent table from the
child table is not required in all rows. An example would be an attribute in a child table for which the attribute
“not applicable” is coded in terms of the absence of a link to the parent (attribute) table.

In this case, the join may be phrased as an outer join, or OJ. This is done as follows :
table 1.ref column 0J = table 2.1D

Note that the outer join indicator (OJ) is specified for the child table, implying that the reference column
(ref_column) is allowed to be null, i.e. no link to the parent (attribute) table is specified.

The default join is inner join, which requires no specification.

Where clause syntax
The full syntax of the Where clause may be found in the section SQL Syntax Specification.

Remarks

The complexity of the Where clause can contribute significantly to the execution cost of a SQL statement,
especially if multiple subqueries are used. Although the Lava SQL engine attempts to optimise the execution of
the statement as much as possible, subqueries are still executed individually and can extend execution
considerably where large numbers of rows are processed.

The most expensive subquery conditions are IN and NOT IN comparisons - these should be avoided wherever
possible; in the majority of cases (in fact, almost all) it is possible to re-phrase these as EXISTS and NOT
EXISTS conditions, which evaluate considerably faster.

Examples
A very simple Where clause is provided below :

SELECT * FROM system.sys objects WHERE ID = 4

A more complex Where clause including join conditions and a correlated subquery follows :

SELECT

ide node.rowid, ide_node.nodename
FROM

design.ide_node, design.ide workspace
WHERE

ide_node.nodetype id = 1 AND
ide_node.expandworkspace_id =

ide_workspace.rowid AND
ide_workspace.design_id = 1 AND

EXISTS (
SELECT
ide_membernode. id
FROM
design.ide_membernode, design.ide_ws 2 node
WHERE
ide_workspace.rowid = ide _ws 2 node.workspace id
AND

ide ws 2 node.node id = ide_membernode.rowid AND
ide_membernode.nodetype_id = 2

SQL Command Reference

See also
Select, Update, Delete, SQL Syntax Specification, Relational Integrity, Data Extraction and Manipulation

SQL Command Reference

SQL Syntax Specification

Note that in the following syntax specification, several elements and keywords specified are not yet supported.
These elements are indicated through the use of italics - all keywords listed in this way are a future provision,
and the majority are planned for release in revision 5.0 of the Lava SQL engine.

function == ABS | ARCCOS | ARCSIN | ARCTAN | COS | DEG | EXP |
FORMAT | INT | LN | LOG | LOWER | RAD | ROUND | SIN
| SLICE | STRINGPOS | SQRT | SOUNDEX | TAN | TRUNC
| UPPER

aggregate = AVG | COUNT | MIN | MAX] SUM

operator =+] -1*|1 7] mMoD | DIV |~

reservedexpr ::= Pl | ROWID | DATE | TIME | VDT

columnident ::= [schemaident._][{tableident | tablealias}.]columnlabel |
columnalias

columnexpr ::= columnident | reservedexpr | aggregate(columnexpr) |

function(columnexpr [, parm]) |

expression [operator columnexpr]
columnexpr | subquery
column [[AS] columnalias] [, columnlist]

column
colummlist

table ::= tableident | subquery

tablelist ::= table [[AS] tablealias] [, tablelist]
orderlist ::= table [, orderlist]

grouplist ::= columnident [, grouplist]

havinglist filterlist

comparison == #]1<>]>]<]>1] <=] LIKE
wi ldcard =] ?
wildcardstring ::= {char | wildcard} [wildcardstring]
expression z:= columnexpr | number | “wildcardstring”
subquery 2= (query)
exprquery I:= expression | subquery
exprlist ::= expression [, exprlist]
exprlistset ::= (exprlist) | subquery
condition ti= expression comparison exprquery
| expression [NOT] IN exprlistset
| expression [NOT] BETWEEN expression AND expression
| EXISTS subquery
| expression [NOT] LIKE expression
filter NOT] condition

L
filterlist filter [{ AND | OR } Ffilterlist]
query ti= SELECT
columnlist
FROM
tablelist
WHERE
Ffilterlist
ORDER BY
orderlist

GROUP BY
grouplist

HAVING
havinglist

97

Lava Privileges

The Lava Access Privilege System

Lava Privileges

The following table is a comprehensive list of privileges available in the Lava Database.

GRANT REVOKE

CREATE

ALTER

DROP

TRUNCATE

DELETE

UPDATE INSERT

SELECT

SelectRow 00001H
InsertRow 00002H
UpdateRow 00004H
DeleteRow 00008H
TruncateTable 00010H
DropObject 00020H
CreateObject 00040H
AlterObject 00080H
BackupObject 00100H
RestoreObject 00200H

SelectRow through RestoreObject inclusive for schema; equate as above but object_id =0

AlterSchema
DropSchema
CreateSchema

AlterDatabase
DropDatabase
CreateDatabase

Revoke
Grant

CREATE (table) = CreateObject + DROP

DRORP (table) = DropObject + TRUNCATE
TRUNCATE = TruncateTable + DELETE

DELETE (table) = DeleteRow + UPDATE + INSERT
UPDATE = UpdateRow + SELECT

INSERT = InsertRow + SELECT

SELECT {table} = SelectRow

The Lava API

Lava Privileges

The following interface documentation is divided into a set of categories, commencing with indispensable and
mandatory interface calls, through important calls which will be used by the majority applications, to more
exotic and seldom used categories of calls which will seldom be used by the majority of programmers. In order
to provide the most usable documentation of the total interface, some calls are referenced from more than one
category in order to allow logical sets of calls to be as complete as possible. In this case, the primary
documentation for the call (typically in the earliest category documenting the call) is referenced to avoid

duplication of technical detail.

API Categories

Distributed Client Operation

Lava Backup System

Lava Compression

Lava DataGrid Control

Lava Editor Control

Lava Entry ID Functions

Lava Private Memory Management

Lava Raw Table Interface

Lava Replicator Table Functions

Lava Row-level Table Interface

Lava Schema Manipulation

Lava Stack Tables

Lava Table Search Functions

Lava Table Manipulation

Lava Thread Support

Mandatory Interfaces

Miscellaneous Interfaces

SQL Interface

Transaction Frames

User Manipulation

Operating and manipulating a distributed client database
Low-level backup procedures

Compression, decompression and encryption

The API for the Lava DataGrid control

The API for the Lava built-in text editor control
Identifying Lava entities

Controlled memory management procedures

The Raw table interface procedures

Functions related to replicator tables

Interfaces to individual rows and columns in data tables
Creating and dropping user schemas

Special-purpose stack tables and stack operations

Single and multi-column search facilities on data tables
Manipulating, creating and dropping Lava tables
Controlled threading interface

Interfaces essential to interacting with Lava databases
Utility procedures provided by the Lava Runtime Library
Interface to the SQL engine

Operation of transaction frames in Lava

Procedures to create and manipulate user accounts

Mandatory Interfaces

Mandatory Interfaces

This category of calls includes all procedures which no client application to the database can function without.

CloseSession Close the specified session
CreateDatabase Create a client or server database
Dismount Dismount the database

Mount Mount an existing database
OpenSession Open a new database session
See also

API Categories

Mandatory Interfaces

Dismount

The Dismount procedure dismounts the database. The database must be in a mounted state in order to be
operable.

PROCEDURE [PASCAL] Dismount (pSession_id > LONGINT;
pShutdownMode : LONGINT
) - LONGINT;
Parameters
pSession_id X The current session ID.
pShutdownMode : The shutdown mode (Normal, Immediate, Abort).

Return values

A standard rc (return code).

Remarks

The database must be successfully mounted in order for the dismount to execute.

Any open transaction frames are rolled back.

If the current mount mode is client, any connections to the server are terminated.

For a Normal shutdown, the dismount pends on any running critical threads (primarily those threads which
control communication to the server) before shutting down the database. For an Abort shutdown, the database

shutdown is performed immediately regardless of active threads.

See also
Mount, OpenSession, CloseSession, CreateDatabase, Mandatory Interfaces

Mandatory Interfaces

Mount

The Mount procedure mounts an existing database. It is an absolute requirement to mount the database in the
required mode in order to use any database facilities.

PROCEDURE [PASCAL] Mount (pPath : ARRAY OF CHAR;
pStartupMode : LONGINT
) - LONGINT;
Parameters
pPath X The full base path of the database to be mounted.
pStartupMode Required mount mode (Client, Exclusive, Server, StandbyServer).

Return values :
A standard rc (return code).

Remarks
The database must exist and be unmounted for the mount procedure to succeed.

The only valid mount mode for a conventional client application is Exclusive - Client mode is invoked through
CreateDatabase, and Server and StandbyServer modes are used only in database server applications.

The mount will only succeed if all necessary system tables both exist and are completely valid to the correct
revision of the database - this also implies correct relational integrity with all other system tables.

See also
Dismount, OpenSession, CloseSession, CreateDatabase

Mandatory Interfaces

CreateDatabase

The CreateDatabase procedure creates a hew, empty database or creates and mounts a (temporary) client
database when connecting to a server. For client operation, CreateDatabase is a mandatory requirement.

PROCEDURE [PASCAL] CreateDatabase (pPath : ARRAY OF CHAR;
pStartupMode : LONGINT
) - LONGINT;
Parameters
pPath X The full base path of the database to be created.
pStartupMode Required create mode (Client, Exclusive, Server, StandbyServer).

Return values
A standard rc (return code).

Remarks
Any existing database at the nominated base path will be cleared. If successful, the procedure creates an empty
new database.

In both Client and Exclusive mode, the CreateDatabase procedure both creates and mounts the database. In
Client mode, however, the database is temporary and cannot be re-mounted after the client application has
dismounted the database.

Server and StandbyServer mode are treated as for exclusive mode.

See also
Dismount, Mount, OpenSession, CloseSession

Mandatory Interfaces

OpenSession

The OpenSession procedure creates a new session on a lava database. The database must have been
successfully mounted (or created, for client operation).

PROCEDURE [PASCAL] OpenSession(pUser . ARRAY OF CHAR;
pPassword : ARRAY OF CHAR;
pServer - ARRAY OF CHAR;
pClientlP : LONGINT;
pServerlP - LONGINT;
pMasterSession_id : LONGINT

) : LONGINT;
Parameters

pUser : The username for the session

pPassword : The password for the nominated user

pServer : The server name for client-server sessions

pClientlP > The IP address of the client - used only by
the server

pServerlP : The server IP - used if the server cannot be
addressed by name

pMasterSession_id > The Session ID of the master session, If this

is a slave session

Return values
The procedure returns the new session ID. If the request fails, the return is 0.

Remarks

The nominated user account and password must be valid on the target database - if the mount mode is Client,
the user account must exist on the nominated Lava Server. If the mount mode is Exclusive, the user account
must exist on the local database.

The user account may not be disabled - in the disabled state, the only valid operation on the account is the
EnableUser procedure.

The pClientIP parameter is not used in application programs - this is strictly for use by the Lava Server.

The server (in the case of Client mount) may be specified in one of two ways : the first, in the pServer
parameter, is by server name using named pipes. The second, in the pServerlP parameter, makes use of a
regular TCP/IP address to define the server. If the pServerlP parameter is non-null, this takes precedence over
the name parameter.

Under special conditions, a slave session to a given current session may be required in order to divide updates or
queries, or to isolate certain processing segments for design reasons. For this purpose, the pMasterSession_id
parameter may be used - if this parameter is non-null, it must be a valid current session to the required lava
database. The pUser and pPassword parameters must be completed to authenticate the connection request, but
all other parameters are left null (0). The connection is established to the same database as the master session,
but forms an autonomous session with autonomous transaction frames if updates are performed. Slave sessions
are closed as for normal sessions, using the CloseSession procedure.

See also
CloseSession, Mount, Dismount, CreateDatabase, DisableUser, EnableUser

Mandatory Interfaces

CloseSession

The CloseSession procedure closes an existing session on a lava database.

PROCEDURE [PASCAL] CloseSession(pSession id : LONGINT) : LONGINT;
Parameters
pSession_id : An existing, current session ID.

Return values
A standard rc (return code).

Remarks
The session is closed, and becomes invalid for future use.
Any open transaction frames are rolled back.

See also
OpenSession, Mount, Dismount, CreateDatabase

Mandatory Interfaces

User Manipulation

The commands in this section are used to set up and adjust user accounts. In Exclusive mode, the user accounts
on the exclusive database itself are adjusted, whereas in Client mode user accounts on the server database are
adjusted.

CreateUser
DisableUser

DropUser
EnableUser

See also
API Categories

CreateUser

The CreateUser procedure allows the creation of new user account with basic attributes. Further attributes may
be set using specific privilege instructions.

PROCEDURE [PASCAL] CreateUser(pSession_id : LONGINT;
pUser : ARRAY OF CHAR;
pPassword : ARRAY OF CHAR;
pSchema - ARRAY OF CHAR
) - LONGINT;
Parameters
pSession_id : A valid session ID, which identifies the database on which the user account
is to be created.
pUser : The user name for the new user account.
pPassword : The initial password for the account.
pSchema : The default schema for the user account.

Return values
A standard rc (return code).

Remarks
The nominated user name must not be allocated to any existing account. Neither the user name nor the
password may be a null (empty) string.

See also
DropUser, EnableUser, DisableUser, User Manipulation

User Manipulation

DropUser

The DropUser procedure drops (deletes) a user account. Use of this feature is discouraged, as any audit
references to the given user 1D will become unresolvable. Instead of DropUser, the user account should be
disabled using the DisableUser call.

PROCEDURE [PASCAL] DropUser (pUser : ARRAY OF CHAR) : LONGINT;

Parameters
pUser The user name of the account to be dropped.

Return values
A standard rc (return code).

Remarks
The nominated user account (for the specified user name) must exist and be current.

See also
CreateUser, EnableUser, DisableUser, User Manipulation

User Manipulation

DisableUser

The DisableUser procedure flags the nominated user account as invalid - i.e. the nominated user will not be
valid for opening a session through the OpenSession command.

PROCEDURE [PASCAL] DisableUser (pSession_id LONGINT;

pUser ARRAY OF CHAR
) : LONGINT;
Parameters
pSession_id : A valid session ID
pUser : The user name of the account to be disabled.

Return values
A standard rc (return code).

Remarks
The nominated user account (for the specified user name) must exist and be current.

After successful execution the nominated user account can no longer be used in an OpenSession command, until or
unless the EnableUser procedure is executed with the specified user account.

See also
CreateUser, DropUser, EnableUser, OpenSession, User Manipulation

User Manipulation

EnableUser

The EnableUser procedure flags the nominated user account as valid - i.e. the nominated user will be valid for
opening a session through the OpenSession command, even if previously rendered invalid through the
DisableUser command.

PROCEDURE [PASCAL] EnableUser (pSession_id : LONGINT;
pUser - ARRAY OF CHAR
) : LONGINT;
Parameters
pSession_id : A valid session ID
pUser : The user name of the account to be enabled.

Return values
A standard rc (return code).

Remarks
The nominated user account (for the specified user name) must exist and be current.

After successful execution the nominated user account can be used in an OpenSession command.

See also
CreateUser, DropUser, DisableUser, OpenSession, User Manipulation

Lava Schema Manipulation

CreateSchema
DropSchema

See also
API Categories

CreateSchema

User Manipulation

The CreateSchema procedure creates a new database schema in the database nominated by the session ID. See
the section on Lava schemas for further information on the implementation and usage of schemas.

PROCEDURE [PASCAL] CreateSchema(pSession_id : LONGINT;
pSchema : ARRAY OF CHAR;

VAR pSchema_id = LONGINT;

pPrivilegeEnable : BOOLEAN;

pOwnerSchema_id : LONGINT;

pQuota : LONGINT;
pDescription = ARRAY OF CHAR

) : LONGINT;

Parameters
pSession_id
pSchema
pSchema_id
pPrivilegeEnable

pOwnerSchema_id

pQuota

pDescription

Return values
A standard rc (return code).

Remarks

A valid session 1D

The name for the schema to be created

A reference to the variable to receive the ID of the created schema.
Boolean flag which indicates whether the new schema is to have
access privileges enabled after creation

(Not currently implemented - future provision) the 1D of the owner
schema for subschemas. Should be set to nil (0).

(Not currently implemented - future provision) the limit, in Mb, to
be set on data stored (in the form of data tables) in the new schema.
Should be set to nil (0)

A user-generated description of the schema

The schema is initially empty after creation, with the exception of the default variable length tables for the

schema.

See also

DropSchema, CreateUser, Lava Schema Manipulation

Lava Schema Manipulation
DropSchema

The DropSchema procedure deletes an existing schema including all tables belonging to the schema.

PROCEDURE [PASCAL] DropSchema (pSession_id : LONGINT;
pSchema - ARRAY OF CHAR
)} : LONGINT;
Parameters
pSession_id : A valid session ID
pSchema X The name of a valid schema

Return values
A standard rc (return code).

Remarks
All data contained in tables belonging to the schema will be lost on successful execution.

The following schemas are invalid for this command, and will return a non-zero return code, indicating failure :
System, Parse, Design, Dictionary, Util, Event, Backup, Linker, Template, Virtual, Sheet, Scratch. These are
system schemas and may not be dropped as this will impair database operations.

See also
CreateSchema, Lava Schema Manipulation

Lava Schema Manipulation

Lava Table Search Functions

The search functions presented in the Lava API are dedicated high-performance query facilities intended to
search only one table at a time. Multi-table (join) searches are available in the SQL interface - see the Select
Statement in the SQL documentation for further details.

Two separate search (query) facilities are presented - the SeekQueryResult family of queries provide multi-
column search facilities, while the FirstColumnEntry family of queries provide a very high performance single

column query.

CloseQuery

FirstColumnEntry

NextColumnEntry

NextQueryResult

PreviousColumnEntry

SeekQueryResult

SetQueryParameter

See also
API Categories

Terminates a multi-column query

Starts a single-column query

Finds the next match for a single-column query
Finds the next match for a multi-column query
Finds the previous match for a single-column query
Starts a multi-column query

Sets column conditional parameters for a multi-column query

Lava Table Search Functions

SetQueryParameter

The SetQueryParameter procedure sets a single column condition for a multi-column query (search). If only
one column is to be searched, use FirstColumnEntry instead.

PROCEDURE [PASCAL] SetQueryParameter (

pSession_id = LONGINT;
VAR pQuery = Sys Query Type;
pIndex : LONGINT;
pObject_id : LONGINT;
pColumn_sequence = LONGINT;
pCondition > LONGINT;
pColumn_type LONGINT;
pColumn_Value_Long : LONGINT;
pColumn_Value Float : LONGREAL;
VAR pColumn_Value_String : ARRAY OF CHAR
) - LONGINT;
Parameters
pSession_id : A valid session ID
pQuery : A reference structure variable of type Sys_Query_Type, which
should be cleared before the first call to SetQueryParameter.
pindex The index (1-based) of the column condition to be specified.
pObject_id : The object ID of the table to be searched
pColumn_sequence : The column sequence for this column condition
pCondition : The condition to be applied - see Comparison Constants
pColumn_type : The data type for the column to be compared against - see Data
Type Constants
pColumn_Value Long : The value for comparison if the data type of the column is integer,
else 0.
pColumn_Value Float : The value for comparison if the data type of the column is float,
else 0.
pColumn_Value_String The string value for comparison if the data type of the column is

string, else a blank string.

Return values
A standard rc (return code).

Remarks
The pQuery structure should be cleared to zero before calling SetQueryParameter for the first time, as the seek
relies on the next column condition after the last valid condition to be blank as a termination.

The column conditions established using the SetQueryParameter procedure must commence with pindex = 1,
and be sequentially specified with no gaps between the values of pIndex.

The maximum number of column conditions that may be specified is 9. Any attempt to specify more than 9
column conditions will result in an error return.

On completion of the query process, the query should be terminated by calling CloseQuery to ensure that all
allocated memory is released after completion.

See also
SeekQueryResult, NextQueryResult, CloseQuery, Lava Table Search Functions

Lava Table Search Functions

CloseQuery

The CloseQuery procedure ensures that any memory allocation during the query process is released.

PROCEDURE [PASCAL] CloseQuery (pQuery : Sys Query Type) : LONGINT;
Parameters
pQuery : A reference structure variable of type Sys_Query Type,

Return values
A standard rc (return code).

Remarks
If CloseQuery is not executed on conclusion of the query process, memory leakage can occur.

See also
SeekQueryResult, NextQueryResult, SetQueryParameter, Lava Table Search Functions

Lava Table Search Functions

NextQueryResult

The NextQueryResult procedure allows retrieval of the next match for a multiple-column query.

PROCEDURE [PASCAL] NextQueryResult(pSession_id : LONGINT;
VAR pQuery = Sys Query Type;
VAR pRowID : LONGINT;
pDelta : LONGINT;
pCleanup - BOOLEAN
) - BOOLEAN;
Parameters
pSession_id : A valid session ID
pQuery : A reference structure variable of type Sys_Query Type, which has

been set up using SetQueryParameter.

: The increment for the result - 1 if the next result
is required, or -1 if the previous result is required.
pCleanup : A boolean indicator which, if TRUE, allows the procedure to
perform query cleanup if no match is found.

pDelta

Return values
TRUE (1) if the next match is valid, FALSE (0) otherwise.

Remarks

Prior to calling NextQueryResult, SetQueryParameter must be used to initialize the pQuery structure, and
SeekQueryResult must be called to establish the result set and find the first match. If either of these steps has
not been completed, the results of the NextQueryResult procedure may be inconsistent with requirements.

If it will be a requirement to retrace parts of the query by reversing direction, the pCleanup flag must be set to
FALSE to ensure that the query does not clear the query information when the first mismatch is encountered. In
this case, CloseQuery must be called explicitly on conclusion of the query.

See also
SetQueryParameter, SeekQueryResult, CloseQuery, Lava Table Search Functions

Lava Table Search Functions

SeekQueryResult

The SeekQueryResult procedure must be used to establish the first match for a multi-column query, after the
pQuery structure has been successfully initialized using SetQueryParameter for every search column.

PROCEDURE [PASCAL] SeekQueryResult(pSession _id : LONGINT;
pObject id : LONGINT;
VAR pQuery = Sys Query Type;
pLowerBound : BOOLEAN;
VAR pRowlD : LONGINT;
pCleanup : BOOLEAN
) - BOOLEAN;
Parameters
pSession_id : A valid session ID
pObject _id : The object ID of the query table - used for validation purposes
pQuery : A reference structure variable of type Sys_Query_Type, which has
been set up using SetQueryParameter.
pLowerBound : A boolean flag which indicates, for inequality range searches, that
the match should commence at the lower bound of the match range
pRowID : A reference longint variable in which the row ID of the match is returned, if
a valid match is found.
pCleanup : A boolean indicator which, if TRUE, allows the procedure to

perform query cleanup if no match is found.

Return values
TRUE (1) if the next match is valid, FALSE (0) otherwise.

Remarks

Prior to calling SeekQueryResult, SetQueryParameter must be used to initialize the pQuery structure. If this
step has not been completed, the results of the SeekQueryResult procedure will be inconsistent with
requirements.

In general, the pCleanup flag should be set to TRUE to allow the query to clear the query information if no
match is encountered. If not, CloseQuery must be called explicitly on conclusion of the query.

For inequality comparisons which yield a range of results, the query builds a result set comprising the matches
to the query. In this case, the pLowerBound flag should be set appropriately to indicate whether the first match
should be at the lower or upper bound of the result set.

See also
SetQueryParameter, NextQueryResult, CloseQuery, Lava Table Search Functions

Lava Table Search Functions

FirstColumnEntry

The FirstColumnEntry procedure provides a search facility on a single column of a table. This procedure must
be executed before a NextColumnEntry or PreviousColumnEntry may be executed.

PROCEDURE [PASCAL] FirstColumnEntry (

pSession_id = LONGINT;
pObject id = LONGINT;
pColumn_sequence = LONGINT;
VAR pValueAddress : LONGINT;
VAR pColumnScan : ColumnScan_Type;
pCondition = LONGINT
) : BOOLEAN; (* found *)
Parameters
pSession_id : A valid session ID.
pObject id : The object ID for the search table.
pColumn_sequence : The column sequence for the search column.
pValueAddress : This parameter must be an independent doubleword (longint)
variable initialized to the address of the search value.
pColumnScan : A reference variable of type ColumnScan, used to control the
search
pCondition : The search condition - see Comparison Constants

Return values
The search returns TRUE (1) if a match is found for the search condition, FALSE (0) otherwise.

Remarks
The session, object (table) and column sequence must be valid.

The search column may not be of type boolean.

If the search condition is equal or greater, the match is the first row at the lower end of the valid search range (if
more than one row matches the search condition). In this case, NextColumnEntry will successively find each
match to the search condition. If the search condition is less, the match is the first row at the upper end of the
valid search range. In this case, PreviousColumnEntry will successively find the remaining matches.

See also
NextColumnEntry, SeekQueryResult, SetQueryParameter, Lava Table Search Functions

Lava Table Search Functions

NextColumnEntry

The NextColumnEntry procedure allows location of successive matches to a given search which was set up
using FirstColumnEntry.

PROCEDURE [PASCAL] NextColumnEntry (
VAR pColumnScan
punique
VAR pValueAddress

: ColumnScan_Type;
: BOOLEAN;
LONGINT

) : BOOLEAN; (* found *)

Parameters
pColumnScan A reference variable of type ColumnScan Type, used
to control the search
pUnique : A boolean which, if set to TRUE (1), indicates that the search should only
return unique values. If FALSE (0), the search returns all matches to the
search condition.
pValueAddress The search value address reference variable.

Return values
The search returns TRUE (1) if a further match is found for the search condition, FALSE (0) otherwise. The
search also returns FALSE if the end of the table is encountered.

Remarks
The initialization for the search, through FirstColumnEntry, must be successful for NextColumnEntry to have
the possibility of finding further matches.

The pColumnScan reference structure must be as for the initial call to FirstColumnEntry, and may not be
modified by the calling program. The fields in this structure may, however, be referred to for further detail on
the match parameters.

See also
FirstColumnEntry, PreviousColumnEntry, Lava Table Search Functions

Lava Table Search Functions

PreviousColumnEntry

The PreviousColumnEntry procedure allows location of successive (preceding) matches to a given search which
was set up using FirstColumnEntry.

PROCEDURE [PASCAL] PreviousColumnEntry (

VAR pColumnScan ColumnScan_Type;

punique BOOLEAN;
VAR pvalue : LONGINT
) : BOOLEAN; (* found *)
Parameters

pColumnScan A reference variable of type ColumnScan Type, used
to control the search

pUnique : A boolean which, if set to TRUE (1), indicates that the search should only
return unique values. If FALSE (0), the search returns all matches to the
search condition.

pValueAddress The search value address reference variable.

Return values
The search returns TRUE (1) if a further match is found for the search condition, FALSE (0) otherwise. The
search also returns FALSE if the beginning of the search table is encountered.

Remarks
The initialization for the search, through FirstColumnEntry, must be successful for PreviousColumnEntry to
have the possibility of finding further matches.

As PreviousColumnEntry searches for preceding matches to the current match entry, the search must either have
condition less than, or NextColumnEntry must have been successfully executed at least once before the
PreviousColumnEntry procedure can succeed.

The pColumnScan reference structure must be as for the initial call to FirstColumnEntry, and may not be
modified by the calling program. The fields in this structure may, however, be referred to for further detail on
the match parameters.

See also
FirstColumnEntry, NextColumnEntry, Lava Table Search Functions

Lava Table Search Functions

Lava Entry ID Functions

The Entry ID functions provide for the retrieval of Lava ID values for named entries in certain tables. As many
of the Lava API functions require ID values in certain parameters, the functions presented below are important
translation facilities to render many of the more powerful API functions (such as CreateTable or TableRows
usable.

FindSchema

FindUser

GetObject_id

See also
API Categories

Lava Entry ID Functions

FindSchema

The GetSchema_id procedure executes a search for the nominated schema name, and returns the corresponding
schema ID if found.

PROCEDURE [PASCAL] FindSchema (pSchema : ARRAY OF CHAR;
) - LONGINT;
Parameters
pSchema : The name of the schema (case insensitive) to be located.

Return values
The ID of the nominated schema, or 0 if not found.

Remarks
If the search is successful, the ID of the schema is returned. If unsuccessful, 0 is returned.

The nominated schema must exist on the local database - in other words, for Client mount (the default mode of
operation for an application), the nominated schema must already have been distributed to the client database
(see Distributed Client Operation for further information on distributing schemas) for this function to succeed;
the schema search will not be performed on the server. In order to identify a schema on the server, a SQL select
statement such as select id from sys_schemas where schema_name = ‘my schema’ executed through the
LavaCommand procedure will provide the ID of a non-distributed schema from the server.

See also
GetObject id, Lava Entry 1D Functions

Lava Entry ID Functions

GetObject _id

The GetObiject_id procedure attempts to find the nominated object, and if successful returns the object ID.

PROCEDURE [PASCAL] GetObject id (pSession_id LONGINT;
VAR pObjectName : ARRAY OF CHAR;
pSchema_id : LONGINT;
VAR pObject id = LONGINT
) = LONGINT;
Parameters
pSession_id : A valid session ID.
pObjectName : The name (case insensitive) of the required object.
pSchema_id : The schema ID for the schema to which the search is to be limited.
pObject id : A reference longint variable in which the located object ID will be returned.

Return values
A standard rc (return code).

Remarks
If the search is successful, the ID of the object is returned in pObject id and the return code is 0. If
unsuccessful, 0 is returned in pObject _id and the non-zero return code indicates the failure reason.

See also
FindSchema, Lava Entry ID Functions

Lava Entry ID Functions

FindUser

The FindUser procedure returns the user ID (the row ID of the user account in the Sys_Users table) for a
nominated user name.

PROCEDURE [PASCAL] FindUser (pUser : ARRAY OF CHAR) : LONGINT;

Parameters
pUser : The user name for the required user.

Return values
The user ID for the requested user if found, 0 if no match is found.
Remarks

The user name search is case insensitive.

See also
Lava Entry ID Functions

Lava Entry ID Functions

Lava Table Manipulation

The table manipulation procedures provide facilities to create, manipulate, query and drop tables both on the
client database and on the server.

AllocateColumnSpace

AssertTablePointer

ColumnSpec
CreateTable

CreateTablelnstance

DropTable

FreeColumnSpace

RenameTable

RenameTableColumn

TableColumns
TableRows
TableSize

TruncateTable

See also
API Categories

Lava Table Manipulation

TableColumns

The TableColumns procedure returns a detailed column layout for the nominated table (object).

PROCEDURE [PASCAL] TableColumns(
pSession_id
pObject id
VAR pTableFormat
pExpandDimensions
VAR pFlatFormat
)

LONGINT;
LONGINT;
TableColumnType;
BOOLEAN;
TableColumnType

Parameters

pSession_id : A valid session 1D

pObject id : The object ID representing the table for which column detail is
required.

pTableFormat : A reference variable of type TableColumnType, which specifies
the base structure for the column detail.

pExpandDimensions X A boolean parameter indicating whether the column information is
to be expanded to eliminate dimensioned columns

pFlatFormat : A reference variable of type TableColumnType, which receives the
expanded column information if pExpandDimensions is set to
TRUE.

Return values
None. If the function fails, the format structure is returned with a column count of 0.

Remarks
The specified object ID must specify a valid object which is of type table.

The table format reference variable, pTableFormat, contains an initially null pointer to a column structure array.
If the object is located successfully, the TableColumn procedure allocates sufficient heap memory to
accommodate the columns of the table.

If pExpandDimensions is true, the TableColumns procedure will also allocate heap memory for the expanded
column information in the pFlatFormat reference structure.

In order to avoid memory leakage, FreeColumnSpace should be called with the pTableFormat structure (and,
where appropriate, the pFlatFormat structure) to allow the allocated memory to be freed.

See also
ColumnSpec, AllocateColumnSpace, FreeColumnSpace, CreateTable, Lava Table Manipulation

Lava Table Manipulation

TableRows

The TableRows procedure returns the number of data rows in the nominated object (table).
PROCEDURE [PASCAL] TableRows (pObject id : LONGINT) : LONGINT;

Parameters
pObject id : The object ID for the object representing the table for which the rowcount is
required.

Return values
The number of rows in the table represented by the nominated object 1D

Remarks
The object ID must be valid and must refer to a valid table.

See also
TableSize, , Lava Table Manipulation

Lava Table Manipulation

TableSize

The TableSize procedure returns the size in bytes of the nominated object (table).

PROCEDURE [PASCAL] TableSize (pObject id : LONGINT;
VAR pLength - QUADINTEGER
) : LONGINT;
Parameters
pObject id : The object ID referring to the table for which the size is required.
pLength : A reference variable of type Quadinteger (quadword) in which the size of

the table, in bytes, is returned.
Return values
A standard rc (return code).

Remarks
The object ID must be valid and must refer to a valid table.

See also
TableRows, , Lava Table Manipulation

ColumnSpec

Lava Table Manipulation

The ColumnSpec procedure allows specification of the detailed attributes for a single column in a table column
format structure. This procedure is used in order to fill in the details of columns to be defined for a given table
when creating a new table (see CreateTable). The procedure is called once for each column to be added.

Before this procedure may be called, the pTableFormat structure must first be initialized by calling
AllocateColumnSpace in order to allocate sufficient memory for the column information.

PROCEDURE [PASCAL] ColumnSpec (

pIndex > LONGINT;
VAR pTableFormat : LavaDB.TableColumnType;
pName : ARRAY OF CHAR;
pLength > INTEGER;
pType - INTEGER;
pDigits : INTEGER;
pFraction > INTEGER;
pNullable - BOOLEAN;
pSystem - BOOLEAN;
pPrimaryVDT : BOOLEAN;
pCached : BOOLEAN;
pDimension > INTEGER;
pFormat = LONGINT
):
Parameters
pindex The index of the column to be specified. The first column has index 1

pTableFormat

pName
pLength

pType
pDigits

pFraction
pNullable
pSystem
pPrimaryVDT
pCached
pDimension
pFormat

Return values
None.

Remarks

A reference structure of type TableColumnType into which the column
array is specifed

The column name

The length of the column - used only for non-fixed type columns, such as
strings.

The type of the column.

(not in use - future provision) The number of integer digits for columns of
type decimal.

(not in use - future provision) The number of fraction digits for columns of
type decimal.

(not in use - future provision) Boolean parameter indicating whether the
column is nullable.

(Only for system use) Indicates whether the column is restricted to system
use

A boolean parameter indicating whether the column contains the primary
VDT for the table.

A boolean parameter indicating whether the column should be buffered at
mount time.

The dimension for array columns. The dimension should be specified as 0
for non-array columns.

(not in use - future provision) The format ID for a column format entry

The ColumnSpec procedure is used to define the column attributes for all columns in a table format prior to
creating a new table using the CreateTable procedure.

Lava Table Manipulation

The required memory for all columns that are to be defined using ColumnSpec must be allocated in advance
using the AllocateColumnSpace procedure.

Once the information in the table format structure is no longer required, the FreeColumnSpace procedure must
be called with the table format structure to free the allocated column space.

ColumnSpec is called once for each column to be added to the table format. The plndex parameter indicates
which column is to be defined, and this 1-based index must be incremented strictly sequentially for each column
defined - calling ColumnSpec with out of sequence column information will result in an unexpected table
format.

See also
AllocateColumnSpace, FreeColumnSpace, CreateTable, Lava Table Manipulation

Lava Table Manipulation

CreateTablelnstance

The CreateTablelnstance procedure defines an instance table modelled on an existing object (table). This
function allows for the definition of specific tables which can be used to store instance data for a particular
control during its execution. This allows data required for management of the control to be stored, retrieved and
manipulated without having to filter a consolidated table reaching across several current instances of the control
for the data pertaining to a given instance.

PROCEDURE [PASCAL] CreateTablelnstance (

pSession_id = LONGINT;
pTableName - ARRAY OF CHAR;
pSourceObject _id : LONGINT;
pObjectType : LONGINT;
VAR pObject_id : LONGINT;
pRows = LONGINT;
VAR pTablePointer : SYSTEM.PTR
) : LONGINT;
Parameters
pSession_id : A valid session ID
pTableName : The name of the instance table
pSourceObject id : The object ID representing the source (model) table
pObjectType : The object type of the instance table (see Object Types)
pObject_id A reference longint which receives the object ID of the new
instance table if the creation succeeds
pRows : The required number of initial rows to be allocated if the instance
table is a virtual table
pTablePointer : The address of a longint variable to serve as the reference pointer

for the instance table

Return values
A standard rc (return code).

Remarks

CreateTablelnstance is used to create a temporary instance table. Although this can be used for many potential
purposes, the original intent of the function is to allow high-speed processing of instance data with ease of
programming, as fewer search criteria are needed to locate the information for the instance.

In the most general case, CreateTablelnstance would be the first step in instantiating the data for a particular
control. This would be followed by an initialization procedure which extracts appropriate data from the
permanent data tables, and inserts this data into the instance table. This step can, in most cases, be
accomplished by 1 or more SQL “insert as select” statements. The data for the control is then maintained in the
instance table during the lifetime of the control. On expiry of the control, typically when the user executes a
close on the encapsulating window, the data from the instance table is copied back to the permanent data table,
and the instance table is dropped.

The pTablePointer parameter is provided in order to allow the instance table to be addressed directly through an
array. See the section Array Access to Virtual Tables for further details on this mechanism.

See also
CreateTable, Lava Table Manipulation

CreateTable

Lava Table Manipulation

The CreateTable procedure allows creation of a new data table. In addition to the specification of column
details for the table, several attributes may be set to modify the nature and purpose of the table to be created.

Prior to calling the CreateTable command, the pTableFormat parameter needs to be correctly initialized through
use of the ColumnSpec procedure. This defines detailed column attributes required for the table creation

process.
PROCEDURE [PASCAL] CreateTable (
pSession_id : LONGINT;
pTableName - ARRAY OF CHAR;
VAR pObject id : LONGINT;
pObjectType = LONGINT;
VAR pTableFormat : TableColumnType;
pSchema_id : LONGINT;
pInitialSize = LONGINT;
pTimeDomain = BOOLEAN;
pUpdateFileQueue : BOOLEAN;
pUpdateSysTables : BOOLEAN;
pAccessType = LONGINT;
pReplicateTable = BOOLEAN;
pReclaim = BOOLEAN;
pReserveRows - LONGINT;
pLocation : LONGINT
) - LONGINT;
Parameters
pSession_id A valid session ID.
pTableName The name of the table to be created. This name must be unique within the
schema selected for the table. Table names may be non-unique
across database schemas.
pObiject id The object ID of the created table (if successful) is returned in this
reference longint variable.
pObjectType The pObjectType specifies, in a bitfielded longint (dword) parameter, the

pTableFormat

pSchema_id

plInitialSize

pTimeDomain

type options for the table. (see Object Types)

A reference TableColumnType structure, which has already been

pUpdateFileQueue

pUpdateSysTables

pAccessType
pReplicateTable

pReclaim

(future p

constructed using the ColumnSpec procedure

The schema ID for the schema within which the table is to be
created - this may be obtained from FindSchema if only a textual
schema name is available

For virtual and replicator tables, the initial size in bytes of the
memory allocation for the table

(future provision - not in use)

For user table declarations, this boolean flag should always be
TRUE

For user table declarations, this boolean flag should always be
TRUE

rovision - not in use)

A boolean flag which indicates, for physical tables, whether the
table should be replicated by default on mount

A boolean flag which indicates whether deleted rows are re-used
for added rows. If FALSE, rows are added only to the end of the
table.

Lava Table Manipulation

pReserveRows : A numeric value indicating the number of rows which should be
reserved for addition by default on distribution of the table to a
client

pLocation : A constant specifying the location (server or client) and default

distribution status of the created table - see Table Location

Return values
A standard rc (return code).

Remarks

CreateTable is used both to create conventional tables (virtual and physical) as well as stack tables. No special
attributes are required for stack tables, but a table which is created for stack purposes (and has had stack
operations such as Push or Pop executed on it) should be reserved for stack purposes only, as using procedures
such as DeleteRow will result in unexpected table layout and stack results.

The table name, specified in the pTableName parameter, must be unique within the schema (there is a special
exception for tables of type RESULTSET - see Object Types - but these tables are normally created by the SQL
command execution and not by the user)

The pObjectType parameter is compiled through addition of the required object constants - see Object Types -
an example being .SQL_OBJECT_TABLE + SQL_OBJECT_FRAMED, which would create a physical table
which supports transaction frames.. See also the example code provided.

Note that in the case of virtual tables, by default the virtual table will exist only for the current database session.
In order to create a virtual table which persists across database sessions (mounts), the table must be created on
the server (see the pLocation parameter) and must have the SQL_OBJECT_PERSISTENT attribute within the
specified pObjectType.

The pTableFormat structure must be fully specified before the call to CreateTable. This involves multiple calls
to the ColumnSpec procedure to define the columns for the table. See the example code for further details.

The pSchema_id parameter must specify an existing schema, although - in the case of a server table creation -
the schema may not exist locally. In all cases, the user must have adequate access privilege to create a table
within the nominated schema. Conventionally, the schema should be existent on the local database.

The plnitialSize parameter only applies to virtual tables and replicator tables, where a memory image of the
table will be allocated on creation. See Virtual Tables for further information.

The pReplicateTable parameter applies only to physical tables (it should be specified as FALSE for virtual
tables), and will result in the table being replicated into memory - see Replicator Tables for further information
on table replication.

The pReclaim flag specifies whether the table permits deleted rows to be re-used - if FALSE, rows added to the
table (through a SQL insert or use of the AddRow procedure) will always add to the end of the table. The
pReclaim flag may only be TRUE if the table contains a Row_status column

The pReserveRows parameter only applies to physical tables created on the server. The number of rows
specified here is the default number of rows reserved to a client for row addition when the table is distributed.
See Distributed Client Operation for further details.

The pLocation parameter specifies in which database (client or server) the table is to be created, and in the case
of server creation, whether the table is to be immediately distributed to the client. See Table Location for the
applicable constants - as an example, the combination

SQL_OBJECT_SERVER + SQL_OBJECT_DISTRIBUTED

would create the table on the server and distribute the created table to the client.

See also

Lava Table Manipulation

ColumnSpec, CreateTablelnstance, Lava Table Manipulation

Example code
Table Creation

Lava Table Manipulation

AssertTablePointer

The AssertTablePointer procedure may be used to notify the Lava database kernel of a user-defined table
pointer to contain the address of a virtual table. The pointer is maintained by the Lava kernel and always points
at the correct address for the virtual table.

PROCEDURE [PASCAL] AssertTablePointer(

pSession_id = LONGINT;
pObject id = LONGINT;
VAR pTablePointer = SYSTEM.PTR
) : LONGINT;
Parameters

pSession_id : A valid session ID
pObiject _id : The object ID for the virtual table for which the pointer is required.
pTablePointer A reference variable, which should be a 4-byte integer to receive the address

of the virtual table.

Return values
A standard rc (return code).

Remarks
The object ID should refer to a virtual table belonging to (defined by) the caller.

The integer (dword) variable referenced by pTablePointer should be defined as a static variable, since the Lava
Database kernel will continue to modify the content of the address provided for as long as the nominated object
(table) exists. If the variable is defined in transient memory, such as the stack (i.e. a local procedure variable)
these updates will result in memory corruption.

The database kernel will update the nominated variable every time a re-allocation of memory results in the
memory space of the nominated table moving. The nominated pointer is therefore always valid.

The pointer nominated for update should be defined locally as a pointer to an array of structures which coincide
exactly with the column layout of the nominated table. This will result in the array so defined overlaying the
content of the virtual table exactly, row for row. In this way, the virtual table may be addressed (within certain
constraints) directly as if it were an array.

See the description for Array Access to Virtual Tables for further details.

See also
Lava Table Manipulation

Lava Table Manipulation

DropTable

The DropTable procedure drops the nominated table permanently. No recovery options exist, and all data
contained in the nominated table is lost.

PROCEDURE [PASCAL] DropTable (pSession_id : LONGINT;

pObject id : LONGINT
) - LONGINT;
Parameters
pSession_id : A valid session ID
pObiject _id : The object ID representing the table to be dropped

Return values
A standard rc (return code).

Remarks
The nominated session 1D must have appropriate access rights to the table.

Any relations defined to the dropped table will be dropped automatically, and will not be automatically
reinstated even if a table by the same name is created subsequently.

See also
CreateTable, Lava Table Manipulation

Lava Table Manipulation

TruncateTable

The TruncateTable procedure truncates the nominated table. All data previously contained in the table is lost,
and no recovery options exist.

PROCEDURE [PASCAL] TruncateTable(pSession_id : LONGINT;
pObject id : LONGINT
) : LONGINT;
Parameters
pSession_id : A valid session ID
pObiject _id : The object ID representing the table to be truncated

Return values
A standard rc (return code).

Remarks
The nominated session must have the required access permission on the nominated table to execute a truncate.

After the truncate all data in the table is irretrievably lost. The only way to restore the data is by restoring a
backup made before the truncation.

See also
DropTable, CreateTable, Lava Table Manipulation

Lava Table Manipulation

RenameTableColumn

The RenameTableColumn procedure renames a column in the nominated table to a given string.

PROCEDURE [PASCAL] RenameTableColumn(pSession_id = LONGINT;
pObject id = LONGINT;
pColumnSequence : LONGINT;
pColumnName - ARRAY OF CHAR

) : LONGINT;
Parameters
pSession_id : A valid session ID
pObiject _id : The object ID representing the table containing the column
pColumnSequence : The 1-based sequence (index) of the column to be renamed
pColumnName : A string parameter specifying the new name for the column

Return values
A standard rc (return code).

Remarks
The nominated session must have adequate access permissions to execute the rename.

Although the specified column name can be any text string, and the table will still be accessible through the
Lava API (since columns are addressed through the column sequence), if the nominated column name is not
compliant with SQL requirements for a column name (must commence with an alpha character, comprise only
conventional ASCII, and may not contain spaces) the column will not be accessible through SQL.

See also
CreateTable, Lava Table Manipulation

Lava Table Manipulation

RenameTable

The RenameTable procedure renames the nominated table to a newly specified name.

PROCEDURE [PASCAL] RenameTable (pSession_id = LONGINT;
pObject id = LONGINT;
pName = ARRAY OF CHAR

) : LONGINT;
Parameters
pSession_id : A valid session ID
pObiject _id : The object ID representing the table to be renamed
pName : A string parameter specifying the new name for the table

Return values
A standard rc (return code).

Remarks
The nominated session must have adequate access permissions to execute the rename.

Although the specified table name can be any text string, and the table will still be accessible through the Lava
API (since tables are addressed through the object ID representing the table), if the nominated name is not
compliant with SQL requirements for a table name (must commence with an alpha character, comprise only
conventional ASCII, and may not contain spaces) the table will not be accessible through SQL.

See also
CreateTable, Lava Table Manipulation

Lava Table Manipulation

AllocateColumnSpace

The AllocateColumnSpace procedure ensures that the pTableFormat structure has adequate memory allocated to
accommodate all the required columns for the table being defined.

PROCEDURE [PASCAL] AllocateColumnSpace (

VAR pTableFormat : TableColumnType;
pColumnCount > LONGINT
) : LONGINT;
Parameters
pTableFormat A reference TableColumnType structure for which the column array
allocation is to be performed
pColumnCount : The number of columns to be defined for the table

Return values
A standard rc (return code).

Remarks
It is essential that the number of columns to be defined is specified correctly on the first invocation of
AllocateColumnSpace. A second invocation of this procedure is not permitted.

After completion of the table creation (i.e. after CreateTable has been called with the completed table format)
the caller should invoke FreeColumnSpace to free the allocated memory so as to avoid memory leakage.

See also
CreateTable, FreeColumnSpace, Lava Table Manipulation

Lava Table Manipulation

FreeColumnSpace

The FreeColumnSpace procedure releases any memory allocated as a result of invocation of the
AllocateColumnSpace procedure.

PROCEDURE [PASCAL] FreeColumnSpace (

VAR pTableFormat : TableColumnType
) : LONGINT;
Parameters
pTableFormat A reference TableColumnType structure for which the column array

allocation is to be released
Return values
A standard rc (return code).

Remarks
After FreeColumnSpace has been invoked on the table format structure, the column array (defined as a pointer

to allocated memory in this structure) is no longer accessible.

See also
CreateTable, AllocateColumnSpace, Lava Table Manipulation

Transaction Frames

Transaction Frames

The Lava Transaction Frame mechanism presents the ability to perform updates (including adds, updates and
deletes) on table data with the option to commit or rollback the update.

In addition, the mechanism presents the ability to specify transaction checkpoints (through the Set_Transaction
procedure) which creates a nested transaction which may be committed or rolled back independently of the
master transaction.

Transaction nesting is supported to arbitrary depth.

LocksExist
Set_Transaction
Commit
Rollback

TransactionExists

See also
API Categories

Transaction Frames

LocksExist

The LocksExist procedure returns a boolean value indicating whether locks (resulting from row-level updates,
either SQL or row API) exist on the nominated table.

PROCEDURE [PASCAL] LocksExist(pObject id : LONGINT) : BOOLEAN;

Parameters
pObiject _id : The object ID representing the table to be checked for locks

Return values
The function returns TRUE (1) if there are currently active locks on the nominated object, and FALSE (0) if
none are present.

Remarks
If the LocksEXxist procedure returns TRUE, the implication is that at least one current (uncommitted) transaction
contains a pending update on the nominated table.

See also
Set_Transaction, Commit, Rollback, Transaction Frames

Transaction Frames

Set_Transaction

The Set_Transaction procedure provides a means of creating a named transaction checkpoint, which may be
used to perform a partial commit or rollback without terminating the master transaction

PROCEDURE [PASCAL] Set_Transaction(pSession_ID = LONGINT;
pTransactionName : ARRAY OF CHAR;
pAutoCommit . LONGINT;
pSystem = LONGINT

) - LONGINT;
Parameters
pSession_id : A valid session ID.
pTransactionName : The required name for the checkpoint
pAutoCommit : (reserved for future use - not implemented)
pSystem : (reserved for future use - not implemented)

Return values
A standard rc (return code).

Remarks

The nominated session 1D must be the same session as the one used to perform the currently pending updates in
a particular transaction frame for that transaction frame to receive the nested checkpoint. It is possible to create
any number of sessions to a given Lava Server, and if the wrong session 1D is specified the resulting checkpoint
will be unrelated to the current transaction frame.

It is permissible to call Set_Transaction when no current transaction frame exists. This will force a transaction
frame, and will give the transaction frame the name specified. A commit or rollback to this transaction name (in
this case) will be equivalent to a complete commit or rollback.

The specified transaction (checkpoint) name may be any valid ASCII string.

See also
LocksExist, Commit, Rollback, Transaction Frames

Transaction Frames

Commit

The Commit procedure performs a commit for the current transaction, either complete or nested depending on
specified parameters.

PROCEDURE [PASCAL] Commit(pSession_id : LONGINT;
pTransaction = ARRAY OF CHAR
) - LONGINT;
Parameters
pSession_id : A valid session ID with a pending transaction frame.
pTransactionName : The required transaction name for a partial commit

Return values
A standard rc (return code).

Remarks
If no transaction frame exists for the nominated session, the call has no effect.

If the pTransaction parameter is specified as an empty string, the commit is a complete commit, performing a
final update to the data tables on which pending transactions (updates) exist within the transaction frame for the
nominated session. The transaction frame is dropped on successful commit

If the pTransaction parameter is a non-empty string, the nominated transaction (checkpoint) name must exist
within the current major transaction frame for the nominated session. If not, the commit will fail and will return
an error - no action will be performed, and the transaction frame will remain uncommitted.

Provided the nominated transaction (checkpoint) is found, a partial commit will be executed. The nominated
checkpoint may be at any level in the current transaction frame - it is not necessary to commit nested transaction
frames in exact reverse order of creation.

See also
LocksExist, Set Transaction, Rollback, Transaction Frames

Transaction Frames

Rollback

The Rollback procedure performs a rollback for the current transaction, either complete or nested depending on
specified parameters.

PROCEDURE [PASCAL] Rollback(pSession_id : LONGINT;
pTransaction - ARRAY OF CHAR
) - LONGINT;
Parameters
pSession_id : A valid session ID with a pending transaction frame.
pTransactionName X The required transaction name for a partial rollback

Return values
A standard rc (return code).

Remarks
If no transaction frame exists for the nominated session, the call has no effect.

If the pTransaction parameter is specified as an empty string, the rollback is a complete rollback, discarding all
pending transactions (updates) within the transaction frame for the nominated session. The transaction frame is
dropped on successful rollback.

If the pTransaction parameter is a non-empty string, the nominated transaction (checkpoint) name must exist
within the current major transaction frame for the nominated session. If not, the rollback will fail and will
return an error - no action will be performed, and the transaction frame will remain as before the call to
Rollback.

Provided the nominated transaction (checkpoint) is found, a partial rollback will be executed. The nominated
checkpoint may be at any level in the current transaction frame - it is not necessary to rollback nested
transaction frames in exact reverse order of creation.

See also
LocksExist, Set Transaction, Commit, Transaction Frames

Transaction Frames

TransactionExists

The TransactionExsists function returns a boolean value which indicates whether actual pending updates are
present for the nominated session.

PROCEDURE [PASCAL] TransactionExists(pSession_id > LONGINT) : BOOLEAN;
Parameters
pSession_id : A valid session ID

Return values
A boolean indicating presence (TRUE) or absence (FALSE) of an actual transaction pending for the nominated
session

Remarks
If no transaction frame exists for the nominated session, the return value is FALSE.

Even if a transaction frame exists for the nominated session, if no update entries (of any form) are found in the
transaction frame, the return value is FALSE.

See also
LocksExist, Set_Transaction, Commit, Rollback, Transaction Frames

Transaction Frames

Lava Private Memory Management

The Lava kernel supports a set of memory management calls which allow all essential memory management
functions. The major benefits from this interface are automatic management of the memory extent, and the
ability to query memory management tables using SQL.

CreatePrivateMemory

DropPrivateMemory

GetPrivateMemoryAddress

ExtendPrivateMemory

WritePrivateMemory

ClearPrivateMemory

ReadPrivateMemory

See also
API Categories

Lava Private Memory Management

CreatePrivateMemory

The CreatePrivateMemory procedure is the Lava equivalent of the memalloc or heapalloc functions presented
by the Windows API. Similarly to these functions, CreatePrivateMemory allocates the memory required and
returns the Lava equivalent of a “handle” (a Lava Virtual ID) to the allocated memory. In addition, the Lava
procedure activates several facilities which provide for automatic extension of the allocated memory, and
validation of access to memory as well as checks on limits when reading and writing into the allocated memory
- provided that the Lava procedures are used to access the allocated segment.

PROCEDURE [PASCAL] CreatePrivateMemory (pSession_id : LONGINT;
pInitialSize : LONGINT;
pIncrementPercent : LONGINT

) : LONGINT;
Parameters
pSession_id : A valid session ID
pinitialSize : The number of bytes to be allocated at this time
pincrementPercent : The percentage of the initial allocation by which to extend the

allocation if a write into the allocation area using
WritePrivateMemory exceeds the current allocation

Return values
If the function succeeds, the return value is the Virtual 1D for the entry. If the function fails, the return value is
nil (0).

Remarks

In order to obtain a conventional memory address for the allocated memory, the GetPrivateMemoryAddress
procedure may be used, but using a memory address to access the memory will eliminate the advantage of
validation and automatic extension which results from using the provided memory access procedures.

See also
DropPrivateMemory, GetPrivateMemoryAddress, ExtendPrivateMemory, WritePrivateMemory,
ClearPrivateMemory, ReadPrivateMemory, Lava Private Memory Management

Lava Private Memory Management

DropPrivateMemory

The DropPrivateMemory procedure is the equivalent of the heapfree or virtualfree functions presented by the
Windows API to free previously allocated memory. Similarly, DropPrivateMemory frees the memory and
deletes the management entries for a previously allocated private memory entry.

PROCEDURE [PASCAL] DropPrivateMemory (pSession_id : LONGINT;
pVirtual_id : LONGINT
) : LONGINT;
Parameters
pSession_id : A valid session ID
pVirtual_id : A valid and current virtual ID, previously returned by the

CreatePrivateMemory procedure

Return values
A standard rc (return code).

Remarks
After execution of the drop, the virtual ID is no longer valid for private memory operations and will result in an
error code if used.

See also
CreatePrivateMemory, GetPrivateMemoryAddress, ExtendPrivateMemory, WritePrivateMemory,
ClearPrivateMemory, ReadPrivateMemory, Lava Private Memory Management

Lava Private Memory Management

GetPrivateMemoryAddress

The GetPrivateMemoryAddress procedure is presented for the sake of completeness, and to allow
advanced users to access the memory allocated by the private memory functions directly. However, use of this
facility is discouraged as it is unprotected and could cause memory violations or memory corruption. Most
especially, it is not good practice to write into the memory using this address - use the WritePrivateMemory
procedure provided instead, which will validate memory addressed and extend the memory allocated if
necessary.

PROCEDURE [PASCAL] GetPrivateMemoryAddress (

pSession_id = LONGINT;
pVirtual _id : LONGINT;
VAR pBufferAddress : LONGINT
) : LONGINT;
Parameters
pSession_id : A valid session ID
pVirtual_id : A valid and current virtual ID, previously returned by the
CreatePrivateMemory procedure

pBufferAddress : A reference longint variable which receives the address of the allocated

memory segment

Return values
A standard rc (return code).

Remarks

Where the address of the memory segment is to be used to overlay a structure, previously correctly sized for
allocation through the CreatePrivateMemory procedure, this facility is justified. It is important, however, not to
succumb to the temptation to write into the memory outside of the overlayed structure, but to use the
WritePrivateMemory or ExtendPrivateMemory facilities to ensure that the validation provided by the private
memory system is maintained.

See also
CreatePrivateMemory, DropPrivateMemory, ExtendPrivateMemory, WritePrivateMemory,
ClearPrivateMemory, ReadPrivateMemory, Lava Private Memory Management

Lava Private Memory Management

ExtendPrivateMemory

The ExtendPrivateMemory procedure extends a previously allocated memory segment by the number of bytes
specified.

PROCEDURE [PASCAL] ExtendPrivateMemory (pSession_id : LONGINT;
pVirtual_id : LONGINT;
pExtendSize LONGINT
) : LONGINT;

Parameters

pSession_id : A valid session ID

pVirtual_id : A valid and current virtual ID, previously returned by the
CreatePrivateMemory procedure

pExtendSize : The number of bytes by which the memory allocation is to be extended.

Return values
A standard rc (return code).

Remarks

Using the ExtendPrivateMemory procedure is only necessary if, for specific reasons, the memory will not be
accessed using the WritePrivateMemory procedure, which would automatically extend memory whenever
required.

See also
CreatePrivateMemory, DropPrivateMemory, GetPrivateMemoryAddress, WritePrivateMemory,
ClearPrivateMemory, ReadPrivateMemory, Lava Private Memory Management

Lava Private Memory Management

WritePrivateMemory

The WritePrivateMemory procedure allows the caller to write data into a memory segment previously allocated
using the CreatePrivateMemory procedure.

PROCEDURE [PASCAL] WritePrivateMemory (pSession_id = LONGINT;
pVirtual_id = LONGINT;
pBufferAddress : LONGINT;
pOffset : LONGINT;
pSize : LONGINT

) : LONGINT;
Parameters

pSession_id : A valid session ID

pVirtual_id : A valid and current virtual ID, previously returned by the
CreatePrivateMemory procedure

pBufferAddress : The address of the source data to be written into the private memory
segment

pOffset : The offset into the private memory segment at which point the data pointed
to by pBufferAddress is to be written

pSize : The number of byte to be written into the private memory segment from the

source data

Return values
A standard rc (return code).

Remarks

If the memory addressed from pOffset to pOffset + pSize reaches beyond the current extent of the allocated
private memory, the memory allocation will be automatically extended to encompass the requested memory
write. This also holds even if the start point specified by pOffset is beyond the current allocation.

If, for some reason (such as an out of memory condition), the WritePrivateMemory procedure is required to
extend the memory allocation and is unable to do so, an error code is returned. Similarly, if pOffset is negative,
an error code is returned.

See also
CreatePrivateMemory, DropPrivateMemory, GetPrivateMemoryAddress, ExtendPrivateMemory,
ClearPrivateMemory, ReadPrivateMemory, Lava Private Memory Management

Lava Private Memory Management

ClearPrivateMemory

The ClearPrivateMemory procedure clears a segment of allocated memory to zero.

PROCEDURE [PASCAL] ClearPrivateMemory (pSession_id = LONGINT;
pVirtual_id = LONGINT;
pOffset . LONGINT;
pSize : LONGINT

) : LONGINT;
Parameters

pSession_id : A valid session ID

pVirtual_id : A valid and current virtual ID, previously returned by the
CreatePrivateMemory procedure

pOffset X The offset into the private memory segment at which point the cleared
segment commences

pSize : The number of byte to be cleared in the private memory segment

Return values
A standard rc (return code).

Remarks

If the memory addressed from pOffset to pOffset + pSize reaches beyond the current extent of the allocated
private memory, the memory allocation will be automatically extended to encompass the requested memory
clear. This also holds even if the start point specified by pOffset is beyond the current allocation.

See also
CreatePrivateMemory, DropPrivateMemory, GetPrivateMemoryAddress, ExtendPrivateMemory,
WritePrivateMemory, ReadPrivateMemory, Lava Private Memory Management

Lava Private Memory Management

ReadPrivateMemory

The ReadPrivateMemory procedure reads (copies) a segment of memory from a private memory allocation

PROCEDURE [PASCAL] ReadPrivateMemory (pSession_id = LONGINT;
pVirtual_id = LONGINT;
pBufferAddress : LONGINT;
pOffset : LONGINT;
pSize : LONGINT

) : LONGINT;
Parameters

pSession_id : A valid session ID

pVirtual_id : A valid and current virtual ID, previously returned by the
CreatePrivateMemory procedure

pBufferAddress : The address into which the data from the virtual memory is to be copied

pOffset : The offset into the private memory segment at which point the data to be
copied commences

pSize : The number of byte to be copied (read) from the private memory segment

into the user buffer

Return values
A standard rc (return code).

Remarks
The user buffer must be large enough (pSize bytes) to receive the copied data.

If the memory addressed from pOffset to pOffset + pSize reaches beyond the current extent of the allocated
private memory, the memory allocation will be automatically extended to encompass the requested memory
clear. This also holds even if the start point specified by pOffset is beyond the current allocation.

See also
CreatePrivateMemory, DropPrivateMemory, GetPrivateMemoryAddress, ExtendPrivateMemory,
WritePrivateMemory, ClearPrivateMemory, Lava Private Memory Management

Lava Private Memory Management

Lava Replicator Table Functions

The procedures presented in this section are for advanced use only - programmers who attempt to use these calls
should be sure to have a sound grasp of the principles of Lava Virtual Tables, and be experienced in memory

manipulation.

ReplicatorToDisk
ExtendReplicatorTable

Virtual Realloc

See also
API Categories

Lava Replicator Table Functions

ReplicatorToDisk

The ReplicatorToDisk procedure writes the entire content of the replicator (a Virtual table which is the
Replicator memory copy of a disk table) to disk.

Under normal circumstances, this is never required as the Lava database kernel ensures that the disk and
memory copies are consistent. The ReplicatorToDisk procedure is only required if the replicator is
independently modified through array access, leaving the disk copy out of date.

PROCEDURE [PASCAL] ReplicatorToDisk (pSession_id : LONGINT;
pObject_id : LONGINT
) : LONGINT;
Parameters
pSession_id : A valid session ID
pObiject _id : The object ID of the table in question

Return values
A standard rc (return code).

Remarks
ReplicatorToDisk can only be used in Exclusive mount mode - in Client mode, the procedure is hon-functional
as Client databases consist solely of Virtual tables.

This procedure should only be used when severe performance constraints are encountered. Even then, other
techniques for improving performance should be explored before resorting to ReplicatorToDisk.

See also
Virtual Realloc, Lava Replicator Table Functions

Lava Replicator Table Functions

ExtendReplicatorTable

The ExtendReplictorTable extends the virtual memory of a replicator (a Virtual table which is the Replicator
memory copy of a disk table) to accommodate the specified number of rows.

PROCEDURE [PASCAL] ExtendReplicatorTable (pObject id : LONGINT;
pMinimunRows : LONGINT
) : LONGINT;
Parameters
pObiject _id : The object ID of the replicator table
pMinimumRows : The number of rows to be provided for

Return values
A standard rc (return code).

Remarks
ExtendReplicatorTable can only be used in Exclusive mount mode - in Client mode, the procedure is non-
functional as Client databases consist solely of Virtual tables.

Generally, it is not necessary to call this procedure as the Lava Database kernel will always ensure that
sufficient memory is allocated for current row requirements.

See also
Virtual Realloc, Lava Replicator Table Functions

Lava Replicator Table Functions

Virtual_Realloc

The Virtual_Realloc procedure ensures that the virtual table nominated has sufficient memory allocated to
accommodate the number of rows specified.

PROCEDURE [PASCAL] Virtual Realloc (pObject id - LONGINT;
pMinimumRows LONGINT
) - LONGINT;
Parameters
pObiject _id : The object ID of the virtual table
pMinimumRows : The number of rows to be provided for

Return values
A standard rc (return code).

Remarks
The Virtual_Realloc procedure is normally only used if performance constraints require fewer memory
allocations while adding rows to a virtual table.

In special cases, and for advanced users, the Virtual _Realloc procedure can be used to ensure that a virtual table
has a minimum number of addressable rows if the table has been mapped onto a memory array into which a
given set of rows is to be written without using the AddRow procedure. This technique should be used with
care, as memory violations can result if memory bounds are overstepped.

See also
ReplicatorToDisk, Lava Replicator Table Functions

Lava Replicator Table Functions

Lava Row-level Table Interface

In order to allow comprehensive access to data in any Lava table, a complete row-level API is defined to allow
addition, modification and deletion of any row. The interface in this category applies only to non-raw tables,
i.e. tables with a specified RowStatus column. For raw tables, see the following category, Lava Raw Table
Interface.

GetColumn
GetRow
PutColumn
PutRow
AddRow

DeleteRow

See also
API Categories

Lava Row-level Table Interface

GetColumn

The GetColumn procedure allows retrieval of a single column (of a single row) from a nominated table. This
interface allows the retrieval of both fixed-length and variable-length columns.

PROCEDURE [PASCAL] GetColumn(pSession_id : LONGINT;
pObject id = LONGINT;
pBufferAddress . LONGINT;

VAR pBytesRead : LONGINT;
pRowlD : LONGINT;
pColumnSequence = LONGINT

) - LONGINT;

Parameters

pSession_id : A valid session ID

pObiject _id : The object ID for the required table

pBufferAddress : The address of a memory buffer (declared by the caller) to receive
the column data

pBytesRead : A reference longint variable that receives the length in bytes of the
column retrieved

pRowID : The row ID of the table row containing the column to be retrieved

pColumnSequence : The 1-based column sequence of the column to be retrieved

Return values
A standard rc (return code).

Remarks

The column to be retrieved may be of any type.

This procedure is the only method provided to retrieve the content of variable-length columns.

The buffer to receive the column data must be declared by the caller, and must be long enough to receive all
column data. The pBytesRead value must be initialized to the length of the buffer before calling the procedure

to allow validation.

The pBytesRead parameter will be updated by the GetColumn procedure to reflect the actual number of bytes
retrieved.

See also
GetRow, PutColumn, PutRow, AddRow, DeleteRow, Lava Row-level Table Interface

GetRow

Lava Row-level Table Interface

The GetRow procedure allows retrieval of a single table row. Variable-length columns are not retrieved in
entirety; only the fixed length (base length) portion is retrieved.

PROCEDURE [PASCAL] GetRow(

Parameters
pSession_id
pObiject _id
pBufferAddress

pBytesRead
pRowlID
pPassByAddress
pBufferPointer

Return values
A standard rc (return code).

Remarks

pSession_id : LONGINT;

pObject id LONGINT;

pBufferAddress : LONGINT;
VAR pBytesRead : LONGINT;

pRowlD : LONGINT;

pPassByAddress : BOOLEAN;
VAR pBufferPointer - LONGINT
) - LONGINT;

A valid session 1D

The object ID for the required table

The address of a memory buffer (declared by the caller) to receive
the row data

A reference longint variable that receives the length in bytes of the
row retrieved

The row ID of the table row to be retrieved

System option only - not allowed for non-system callers

System option only - not allowed for non-system callers

The pBytesRead parameter must be initialized to the correct row length - a value smaller than the row length
will cause processing to fail and an error to be returned.

See also

GetColumn, PutColumn, PutRow, AddRow, DeleteRow, Lava Row-level Table Interface

Lava Row-level Table Interface

PutColumn

The PutColumn procedure allows a single column (of a single row) to be updated in the nominated table. This
permits both fixed-length and variable-length columns to be updated.

PROCEDURE [PASCAL] PutColumn(pSession_id : LONGINT;
pObject id : LONGINT;
pBufferAddress : LONGINT;

VAR pBytes = LONGINT;
pRowlD : LONGINT;
pColumnSequence : LONGINT
) - LONGINT;
Parameters
pSession_id : A valid session ID
pObiject _id : The object ID for the required table
pBufferAddress : The address of a memory buffer (declared by the caller) which
contains the column data
pBytes : A reference longint variable that receives the length in bytes of the
column processed
pRowID : The row ID of the table row containing the column to be updated
pColumnSequence : The 1-based column sequence of the column to be updated

Return values
A standard rc (return code).

Remarks
The column to be updated may be of any type.
This procedure is the only method provided to update the content of variable-length columns.

The buffer containing the column data must be at least as long as the column to be updated, even in the case of
string columns.

The pBytes parameter will be updated by the PutColumn procedure to reflect the actual number of bytes
updated.

See also
GetColumn, GetRow, PutRow, AddRow, DeleteRow, Lava Row-level Table Interface

Lava Row-level Table Interface

PutRow

The PutRow procedure allows the update of a single table row. Variable-length columns are not updated in
entirety; only the fixed length (base length) portion is updated.

PROCEDURE [PASCAL] PutRow(pSession_id : LONGINT;
pObject id = LONGINT;
pBufferAddress : LONGINT;
pBytes = LONGINT;
pRowlD : LONGINT

) - LONGINT;
Parameters
pSession_id : A valid session ID
pObiject _id : The object ID for the required table
pBufferAddress : The address of a memory buffer containing the updated row data
pBytes : The length of the data buffer in bytes
pRowID : The row ID of the table row to be updated

Return values
A standard rc (return code).

Remarks

The pBytes parameter must be specified as the correct row length - a value unequal to the row length will cause
processing to fail and an error to be returned.

The row to be updated should exist, but is permitted to have a deleted Row status.

See also
GetColumn, GetRow, PutColumn, AddRow, DeleteRow, Lava Row-level Table Interface

Lava Row-level Table Interface

AddRow

The AddRow procedure permits the addition of new rows to a table.

PROCEDURE [PASCAL] AddRow(pSession_id : LONGINT;
pObject id = LONGINT;
pBufferAddress : LONGINT;
pBytes = LONGINT;

VAR pRowlD : LONGINT
) - LONGINT;
Parameters
pSession_id : A valid session ID
pObiject _id : The object ID for the required table
pBufferAddress : The address of a memory buffer containing the new row data
pBytes : The length of the data buffer in bytes
pRowID : A reference longint variable that will be set to the row ID of the

table row added

Return values
A standard rc (return code).

Remarks

The pBytes parameter must be specified as the correct row length - a value unequal to the row length will cause
processing to fail and an error to be returned.

Depending on the table attributes, the new data row will not necessarily be added at the end of the table. If the
table has the Reclaim attribute set (see CreateTable) the AddRow procedure will attempt to find an unused
(deleted) slot in which to place the new row.

See also
GetColumn, GetRow, PutColumn, PutRow, DeleteRow, Lava Row-level Table Interface

Lava Row-level Table Interface

DeleteRow

The DeleteRow procedure provides a mechanism for deleting data rows from non-Raw tables.

PROCEDURE [PASCAL] DeleteRow(pSession_id : LONGINT;
pObject id =: LONGINT;
pRowlID = LONGINT

) = LONGINT;
Parameters
pSession_id : A valid session ID
pObiject _id : The object ID for the required table
pRowID : The row ID for the row to be deleted.

Return values
A standard rc (return code).

Remarks

The nominated row is flagged as deleted, and is no longer a valid entry for retrieval with functions such as
GetRow or GetColumn, and will not be selected in any SQL select statement.

DeleteRow may not be used on a Raw table (see Lava Raw Tables).
After deletion, if the table is flagged as Reclaim (see CreateTable), the slot may be used for newly added rows.

See also
GetColumn, GetRow, PutColumn, PutRow, AddRow, Lava Row-level Table Interface

Lava Row-level Table Interface

Lava Raw Table Interface

This category deals with interface to tables which do not have a RowStatus column - i.e. rows in the table
cannot be flagged as deleted, in order to remove a row from the table it must be physically eliminated, and all
subsequent rows in the table moved up. Raw tables are also known as packed tables, as there are no blank or
unused entries in a Raw table.

The usage of Raw tables is an advanced concept, and should only be used by programmers who fully understand
the concept of packed tables and the limitations and performance constraints imposed by this mechanism.

InsertRow_VirtualRaw

DeleteRow VirtualRaw

See also
API Categories

Lava Raw Table Interface

InsertRow_VirtualRaw

The InsertRow_VirtualRaw procedure allows a data row to be added to a Raw table. The row may be added at
any point in the table, allowing sorted or ordered inserts. There is a performance penalty when inserting an
early row ID into a large Raw table, as all memory subsequent to the insertion point must be moved up to make
space for the new entry.

PROCEDURE [PASCAL] InsertRow_VirtualRaw(pObject id : LONGINT;
pUsedRows = LONGINT;
pRowlID > LONGINT;
pBufferAddress . LONGINT;
pUpdateControlFile : BOOLEAN

) - LONGINT;
Parameters
pObiject _id : The object ID representing the table to be updated
pUsedRows : The total number of rows in the Raw table prior to the insertion
pRowID : The row ID before which the row is to be inserted
pBufferAddress : The address of the memory buffer containing the new row data
pUpdateControlFile : A boolean flag which, for non-system users, should always be set

to TRUE.

Return values
A standard rc (return code).

Remarks

Due to the nature of the Raw table interface, the procedures are “unsafe” and can cause the entire application to
fail if all parameters are not exactly correct on each invocation. For this reason, most programmers are advised
not to use this procedure; the normal row-level interface to standard tables should be used instead.

The buffer presented must be of the same length as the row length of the Raw table to be updated.

In order to add rows to the end of a Raw table, the AddRow procedure should be used - InsertRow_VirtualRaw
is intended strictly to insert rows before existing rows in the table.

See also
DeleteRow VirtualRaw, PutRow, AddRow, Lava Row-level Table Interface, Lava Raw Table Interface

Lava Raw Table Interface

DeleteRow_VirtualRaw

The DeleteRow_VirtualRaw procedure allows deletion of rows from a Raw table. After deletion, all rows
subsequent to the deleted row are moved up over the deleted row, as Raw tables never have any unused or free
rows. There is a performance penalty when deleting an early row ID into a large Raw table, as all memory
subsequent to the insertion point must be moved up to eliminate the deleted row.

PROCEDURE [PASCAL] DeleteRow_VirtualRaw (pObject id : LONGINT;
pRowlD : LONGINT;
pUpdateControlFile : BOOLEAN

) - LONGINT;
Parameters
pObiject _id : The object ID representing the table to be updated
pRowlID : The row ID of the row to be deleted
pUpdateControlFile : A boolean flag which, for non-system users, should always be set

to TRUE.

Return values
A standard rc (return code).

Remarks

Due to the nature of the Raw table interface, the procedures are “unsafe” and can cause the entire application to
fail if all parameters are not exactly correct on each invocation. For this reason, most programmers are advised
not to use this procedure; the normal row-level interface to standard tables should be used instead.

See also
InsertRow_VirtualRaw, PutRow, AddRow, Lava Row-level Table Interface, Lava Raw Table Interface

Distributed Client Operation

Distributed Client Operation

The concept of Distributed Client is one of the most import new concepts in the Lava database. In brief,
Distributed Client allows the client application to operate at all times as if the server database is mounted locally
in exclusive mode. All distributed schemas can be accessed with the speed and ease of use of a private, single
user database, while the Distributed Client mechanism takes care of communication with the server.

For a more detailed description of Distributed Client, see the related description under Key Concepts.

If the database has been mounted in client mode, and is successfully connected to a Lava server, schemas (with
the exception of the System schema) may be distributed to the client - this renders access to the tables in the
schema very fast and easy, and automatically enables peer-to-peer data sharing, or workgroup operation, on all
tables within the schema.

RegquestUpdateEvent

DistributeSchema

See also
API Categories

Distributed Client Operation

RequestUpdateEvent

The RequestUpdateEvent procedure provides a means for the client application to acquire notification of
changes in the database with respect to any tables distributed to the client.

Directly after client initialization (through the CreateDatabase procedure) the client requests distribution of any
schemas the client will be monitoring, displaying or modifying. This is achieved through the DistributeSchema
procedure. This results in all tables belonging to the nominated schemas being distributed to the client database.

At this point, the RequestUpdateEvent procedure is called, once for each schema to be monitored. This results
in a Windows message being posted to the event handler of the client application on every occasion where data
modification occurs in any of the distributed tables belonging to the nominated schema.

PROCEDURE [PASCAL] RequestUpdateEvent (pHandle > LONGINT;
pSchema_id : LONGINT;
pEvent = LONGINT;
pbIndividual : BOOLEAN

) : LONGINT;

Parameters

pHandle : The handle of the window to which update events are to be posted

pSchema_id : The ID of the schema for which table modification is to be notified

pEvent : The event code to be posted to the client window

pbindividual : A boolean flag indicating whether table-individual notification is required - see in

Remarks below.

Return values
A standard rc (return code).

Remarks

On modification of any of the tables in the nominated schema, the provided window handle will receive a
message (nominated in pEvent) to its event handler (or Window Procedure - see WindowProc in the Windows
API documentation).

If pbindividual is specified as FALSE, a single message is posted for each batch of updates from the server
(which may update multiple tables) with wParam and IParam both null (see WindowProc in the Windows API
documentation).

If pbindividual is specified as TRUE, one message is posted for each table modified, with wParam equal to the
object ID of the table being updated as a result of a server-distributed update. The IParam parameter is null.

See also
DistributeSchema, Distributed Client Operation

Distributed Client Operation

DistributeSchema

The DistributeSchema procedure requests distribution of all the tables in the nominated schema from the server.
On successful completion, and after the propagation delay incurred as a result of line bandwidth, the client has
the complete data of the entire schema present on the workstation.

In addition, from the time of distribution onward, the server updates any data modified as a result of updates or
additions performed by other clients with this schema distributed.

PROCEDURE [PASCAL] DistributeSchema(pSession_id : LONGINT;
pSchema : ARRAY OF CHAR;
pbInitial : BOOLEAN;
pbFinal - BOOLEAN

) : LONGINT;

Parameters

pSession_id X A valid session ID, which links to the correct server

pSchema : The name of the schema to be distributed

pblnitial : A boolean flag indicating whether this is the first schema in a batch of distribution

requests

pbFinal : A boolean flag indicating whether this is the last schema in a batch of distribution

requests

Return values
A standard rc (return code).

Remarks

The schema is specified in name form (text) instead of the conventional ID format, as the nominated schema
may not exist on the freshly mounted client database, and hence it is not possible to locally determine the
schema ID - hence the name of the schema is more practical. The name is case insensitive.

The pblnitial flag must be TRUE (1) for the first call to DistributeSchema after mount, FALSE (0) otherwise.
The pbFinal flag must be TRUE (1) for the last call to DistributeSchema, FALSE (0) otherwise.
If only one schema is to be distributed, both pblnitial and pbFinal should be flagged as TRUE.

See also
RequestUpdateEvent, Distributed Client Operation

Distributed Client Operation

Lava Thread Support

Where the application program requires independent threads and the programmer would like to see the thread in
the lava thread table in order to be able to track threads within the application, the Lava threading interface may
be used to start any required threads. (For a more comprehensive treatment of threads in the Windows
environment, see the category “Processes and Threads” in the Microsoft MSDN).

StartThread

CloseThread

See also
API Categories

Lava Thread Support

StartThread

The StartThread procedure starts a new thread with the nominated parameters. In addition, the thread is placed
in a thread wrapper which provides default exception handling which will avoid errors such as divide by zero
and invalid float load causing the thread (or application) to abort.

PROCEDURE [PASCAL] StartThread (

pSession_id = LONGINT;
pThreadType = LONGINT;
pTitle : ARRAY OF CHAR;
pThreadProc : WinBase.LPTHREAD START_ ROUTINE;
pParameterAddress : WinDef.LPVOID;
pldent : LONGINT
) : LONGINT;
Parameters
pSession_id : A valid session ID
pThreadType : A caller-specified thread type identifier, which must be greater than
1000
pTitle : The caller title (text) of the thread
pThreadProc : The address of the thread to be started
pParameterAddress : The address of the parameters to the thread
pldent : A caller-specified thread identifier, which must be greater than
1000

Return values
A standard rc (return code).

Remarks
The thread procedure must comply with the Windows ThreadProc prototype (see ThreadProc in the Windows
API) which allows a 4-byte parameter (dword) and should return a dword on exit.

The pParameterAddres should specify the exact value of the dword parameter to be passed to the thread
procedure on creation (typically a pointer to a structure).

On exit, and before returning, the thread procedure should call CloseThread to allow removal of the thread from
the Lava thread management tables.

See also
CloseThread, Lava Thread Support

Lava Thread Support

CloseThread

The CloseThread procedure notifies the Lava database kernel that a thread previously started using StartThread
is about to be terminated. It should be the last procedure called before the thread exits.

PROCEDURE [PASCAL] CloseThread ();

Parameters
None.

Return values
A standard rc (return code).

Remarks
CloseThread must be called immediately prior to the thread returning (exiting) in order for the Lava kernel to
track the status of the thread.

See also
StartThread, Lava Thread Support

Lava Stack Tables

Lava Stack Tables

In order to support programming algorithms which require an extensible stack for data storage and
manipulation, a special kind of table which supports stack operations in its native mode is provided in the Lava
kernel.

Stack tables are defined in memory, and are extremely fast. As with all Lava tables, memory management is
automatically applied, which means that stack tables are effectively as large as workstation memory.

Aside from characteristics of operation, stack tables are defined and maintained as for any other Lava virtual
table - see Virtual Tables for principles of Lava memory tables, and Lava Table Manipulation for creating and
manipulating stack tables.

Aside from being specified as virtual tables, the characteristics of stack tables result from the stack operations
themselves - a stack table is merely a virtual table on which stack operations are performed. It is permissible to
perform a PutRow operation to a stack table, for example, provided that you fully understand the principles
behind row IDs and virtual table structures - such an update will merely change the value of that item on the
stack. It is not permissible, however, to perform a DeleteRow on a stack table - this violates the stack sequence
and will cause undesirable behaviour from the stack API.

o
c
wn
=

g |

GetStackTop
ClearStack

See also
API Categories

Lava Stack Tables

Push

The Push procedure pushes a new stack item onto the top of a stack table. The stack depth grows by 1.

PROCEDURE [PASCAL] Push(pSession_id LONGINT;
pObject id = LONGINT;
pBufferAddress : LONGINT;
pBytes = LONGINT

) = LONGINT;
Parameters
pSession_id : A valid session ID
pObject id : The object ID representing the stack table
pBufferAddress : The address of the data buffer for the stack item (data row)
pBytes : The number of bytes in the data buffer

Return values
A standard rc (return code).

Remarks
The object ID should represent a valid stack table. Performing stack operations on a conventional (non-stack)
table may have unexpected results.

The number of bytes specified in pBytes should coincide exactly with the size in bytes of the data row as
defined at table creation (see CreateTable). If not, an error will result and the data will not be pushed on the
stack.

See also
Push, Pop, GetStackTop, ClearStack, Lava Stack Tables

Lava Stack Tables

Pop

The Pop procedure pops the top item (row) off a stack table, returns this item to the caller, and diminishes the
stack depth by 1.

PROCEDURE [PASCAL] Pop (pSession_id : LONGINT;
pObject id = LONGINT;
pBufferAddress : LONGINT;
VAR pBytesRead : LONGINT
) - LONGINT;
Parameters
pSession_id : A valid session ID
pObject id : The object ID representing the stack table
pBufferAddress : The address of the data buffer to receive the stack item (data row)
pBytesRead : A reference longint variable which must be initialized by the caler to the

size of the row data for the stack table. The Pop procedure returns the
number of bytes read into the data buffer in this variable.

Return values
A standard rc (return code).

Remarks
The object ID should represent a valid stack table. Performing stack operations on a conventional (non-stack)
table may have unexpected results.

The number of bytes specified in pBytesRead should coincide exactly with the size in bytes of the data row as
defined at table creation (see CreateTable). If not, an error will result and the data will not be popped off the
stack.

See also
Push, Pop, GetStackTop, ClearStack, Lava Stack Tables

Lava Stack Tables

GetStackTop

The GetStackTop procedure reads the top item (data row) off the stack table, but does not diminish the stack
depth. See Pop for a conventional stack pop operation.

PROCEDURE [PASCAL] GetStackTop (pSession_id : LONGINT;
pObject id LONGINT;
pBufferAddress : LONGINT;

VAR pBytesRead : LONGINT
) - LONGINT;
Parameters
pSession_id : A valid session ID
pObject id : The object ID representing the stack table
pBufferAddress : The address of the data buffer to receive the stack item (data row)
pBytesRead : A reference longint variable which must be initialized by the caler to the

size of the row data for the stack table. The Pop procedure returns the
number of bytes read into the data buffer in this variable.

Return values
A standard rc (return code).

Remarks
The object ID should represent a valid stack table. Performing stack operations on a conventional (non-stack)
table may have unexpected results.

The number of bytes specified in pBytesRead should coincide exactly with the size in bytes of the data row as
defined at table creation (see CreateTable). If not, an error will result and the data will not be popped off the
stack.

See also
Push, Pop, GetStackTop, ClearStack, Lava Stack Tables

Lava Stack Tables

ClearStack

The ClearStack procedure clears a stack table, which resets the stack depth to 0.

PROCEDURE [PASCAL] ClearStack (pSession_id : LONGINT;
pObject id = LONGINT
) : LONGINT;
Parameters
pSession_id : A valid session ID
pObiject id X The object ID representing the stack table

Return values
A standard rc (return code).

Remarks
The object ID should represent a valid stack table. Performing stack operations on a conventional (non-stack)
table may have unexpected results.

See also
Push, Pop, GetStackTop, ClearStack, Lava Stack Tables

Lava Stack Tables

SQL Interface

The SQL interface to Lava is operated through a very simple, single procedure call. The results of the call (if
data is to be returned, for example with select statements) are returned in the form of a result table, which is a
conventional Lava Virtual Table with additional attributes.

The location of execution (Client or Server) is determined in terms of the location (distribution status) of the
tables involved. If all tables nominated within the SQL command are distributed, the command is executed on
the Client. If any table nominated in the SQL command is not distributed, the entire command is executed
remotely, on the server. See SQL Command Execution for further information.

See also
API Categories

LavaCommand

The LavaCommand procedure executes a SQL command on a Lava database. The location of execution (Server
or Client) will depend on the mount mode and table distribution details - See SQL Command Execution for
further details.

PROCEDURE [PASCAL] LavaCommand(pSession_id : LONGINT;
VAR pSQL : ARRAY OF CHAR;
VAR pResult_id : LONGINT
) : LONGINT;
Parameters
pSession_id : A valid session ID
pSQL : A string reference variable containing the SQL command to be executed
pResult_id : If the command yields results the result object ID is returned in this

reference longint variable.

Return values
A standard rc (return code).

Remarks

The specified SQL command is executed, and if results are yielded as a result of execution, these are placed in a
Lava result table (in essence a Lava Virtual Table), for which the object ID is returned in pResult_id. If an error
is encountered or no results are yielded by the SQL executed (for example an ALTER TABLE command would
yield no results) the pResult_id is zero (0).

The result data can be extracted either by using the GetRow procedure to extract one row of data at a time, or by
using Array Access to Virtual Tables to map a pointer to an array of row structures over the result set.

Example code
SQL Execution and Data Extraction

Miscellaneous Interfaces

Miscellaneous Interfaces

The interface and utility procedures presented in this section are miscellaneous procedures none of which fit into
any of the conventional categories.

BlockCRC

DayOfWeek
EndActivity

ExtractFileName

Extract VDT Time

Format VDT
FormatNumber

GetCommandParm

GetDate

GetServerDateTime

GetTime

GregorianDate
HeapSort
HPtimestamp

JulianDate

JulianTime

LogEvent
MessageBox
MonthDays

ParseCommandL.ine

Random

ServerDate

ShowActivity
SplitFullName
StartActivity
StringCRC

See also
API Categories

Miscellaneous Interfaces

LogEvent

The LogEvent procedure logs an error or event to the Lava event log (see Sys_Event_Log for more information)

PROCEDURE [PASCAL] LogEvent (
pFunction_id, pEvent id, pObject id, pSession_id, pLog id : LONGINT

) : LONGINT;
Parameters

pFunction_id : An identifier which logs the function (procedure) - user function
numbers should be greater than 1000.

pEvent id : The identifier for the event - this should coincide with an event
type ID, or be recognizable to the caller.

pObject_id : The object ID of a table involved in the event or error

pSession_id : The caller’s session ID

pLog_id : The previous event ID if a chain of events is being established.

Return values
The Event ID for the logged event entry.

Remarks
Logged events can be queried through regular table row interfaces to trace event chains.

See also
Miscellaneous Interfaces

Miscellaneous Interfaces

GetServerDateTime

The GetServerDateTime procedure returns the DateTime as defined by the Lava Server, in VDT format.
PROCEDURE [PASCAL] GetServerDateTime() : LONGREAL;

Parameters
None

Return values
The server DateTime in VDT format.

Remarks
The time returned is that of the server on which the Lava Server is running to which the client is connected, or,
if the mount type is exclusive, it is the local time of the workstation / server on which the database is running.

See also
Miscellaneous Interfaces

Miscellaneous Interfaces

FormatNumber

The FormatNumber procedure creates a formatted string representing a given number in the requested format.

PROCEDURE [PASCAL] FormatNumber(

pNumberAddress = LONGINT;
VAR pOutput : ARRAY OF CHAR;
pPrimary : LONGINT;
pSecondary : LONGINT;
pDecimals = LONGINT;
pb1000Separator : BOOLEAN;
pCurrency = ARRAY OF CHAR;
pbTrailingCurrency - BOOLEAN;
pbUnicode : BOOLEAN
) : LONGINT;
Parameters
pNumberAddress : The address of the source number to be formatted.
pOutput : A reference string to receive the formatted output number
pPrimary : The primary format code - see Primary Format Codes and the Remarks
section for composition of this parameter
pSecondary : The secondary format code - see Secondary Format Codes and the
Remarks section
pDecimals : The number of decimals to be depicted
pb1000Separator : A boolean flag indicating whether a 1000s separator (comma)
should be inserted
pCurrency : A string providing the currency symbol / string if the primary
format code specifies a currency format
pbTrailingCurrency : A boolean flag indicating whether the currency should be placed
trailing (TRUE) or leading (FALSE)
pbUnicode : A boolean flag indicating whether the output string should be in

Unicode (TRUE) or ASCII (FALSE)

Return values
A standard rc (return code).

Remarks
The string variable specified for the output should be long enough to accept the fully formatted string as
specified.

The primary format code (pPrimary) must be compiled from a primary output format (see Primary Format
Codes, FORMAT _P_GENERAL through FORMAT_P_BOOLEAN) and an input number type (see Primary
Format Codes, FORMAT_P_LONGREAL through FORMAT_P_QUADINTEGER). A valid example of a
primary format code would be FORMAT_P_DATE + FORMAT _P_LONGINT, which specifies that the input
number is a longint (4-byte signed integer), and the primary output format is date format.

The secondary format code specifies details of formatting where the primary output format is ambiguous - for
example, in the case of the FORMAT_P_DATE format selected for the primary format above, the secondary
format may be FORMAT_S _DATE_2, specifying the type of date format. If the primary format is
unambiguous, the secondary format should be specified as FORMAT S NULL.

See also
Miscellaneous Interfaces

Miscellaneous Interfaces

Format_ VDT

The Format_VDT procedure formats a standard VDT variable, input in the form of a longreal (8-byte float), into
standard VDT string output form.

PROCEDURE [PASCAL] Format VDT (pVDT : LONGREAL;
VAR VDT String : ARRAY OF CHAR
)
Parameters
pVDT : The VDT to be formatted
VDT _String : A reference string variable to receive the formatted output string

Return values
None

Remarks

The reference string variable must be 20 characters in length to be able to receive the formatted VDT output
string.

The VDT is output in the form YYYY.MM.DD HH:MM:SS.hhh

See also
Miscellaneous Interfaces

GetDate

Miscellaneous Interfaces

The GetDate procedure returns the current date in individual fields

PROCEDURE [PASCAL] GetDate(VAR day,month,year,dayOfWeek: INTEGER) ;

Parameters
day : Reference
month : Reference
year : Reference
dayOfWeek : Reference

integer
integer
integer
integer

is represented as

Return values
None

Remarks

variable. The day of the month
variable. The current month
variable. The current year
variable. Day of the week; Sunday
1

The date returned is as per the workstation date. Use GetServerDateTime to obtain the server date and time.

See also
GetTime, Miscellaneous Interfaces

Miscellaneous Interfaces

GetTime

The GetTime procedure returns the current time in individual fields

PROCEDURE [PASCAL] GetTime(VAR sec,min,hour: INTEGER);

Parameters
sec : Reference integer variable. Current second
min : Reference integer variable. Current minute
hour Reference integer variable. Current hour (24 hour format)

Return values
None

Remarks
The time returned is as per the workstation date. Use GetServerDateTime to obtain the server date and time.

See also
GetDate, Miscellaneous Interfaces

Miscellaneous Interfaces

HPtimestamp

The HPtimestamp procedure returns a high-performance timestamp for timing or performance measurement
purposes.

PROCEDURE [PASCAL] HPtimestamp (VAR time: QUADINTEGER);

Parameters
time : A reference Quadinteger (8-byte signed integer) which is set to the timestamp value.

Return values
None

Remarks

The timestamp is merely a fast, synchronous counter, which is hardware dependent. The exact per-unit meaning
of the count depends on the workstation configuration and manufacturer, and has to be determined on a per-
machine basis, but is usually one count per microsecond in most cases.

See also
Miscellaneous Interfaces

Miscellaneous Interfaces

JulianDate

The JulianDate procedure converts a standard year, month, day specification into a Lava Julian date, consistent
with all Lava date fields and VDT date indicators.

PROCEDURE [PASCAL] JulianDate (pYear, pMonth, pDay : INTEGER) : LONGINT;

Parameters
pYear : The year (CE, Current Era)
pMonth : Month of the year
pDay : Day of the month

Return values
The Lava Julian date for the given standard date.

Remarks
A Julian date is a numerically coded date, from a (normally arbitrary) starting date, which varies from
application to application. In the case of the Lava Julian date, day 1 is January 1%, 300 CE.

Standard arithmetic (subtraction, addition of deltas) are valid on Julian dates, as they are strictly sequential,
taking into account variants such as leap years and days of the month. The result can then be converted to a
Gregorian date using the GregorianDate procedure.

See also
GetServerDateTime, VDT, GregorianDate, Miscellaneous Interfaces

Miscellaneous Interfaces

JulianTime

The JulianTime procedure allows conversion of a conventional (hour, minute, second) time to a time format
compatible with a Lava VDT.

PROCEDURE [PASCAL] JulianTime(
pHour, pMinute, pSecond, pMillisecond : INTEGER
) : LONGREAL;

Parameters
pHour X Required hour in 24-hour fomrat
pMinute : Required minute
pSecond : Required second
pMillisecond : Required milliseconds

Return values
A VDT-format time (presented in a longreal), with the date portion (integer portion) zero.

Remarks
The time value returned is represented as a fraction, coded into the fractional part of the returned longreal. The
integer portion of the return is always 0.

Standard arithmetic can be applied (in general) to time in the returned format, provided that the fraction does not
become less than 0 or greater than the number of milliseconds in a day.

Reverse conversion may be accomplished by Extract VDT _Time.

See also
Extract VDT _Time, Miscellaneous Interfaces

Miscellaneous Interfaces

ServerDate

The ServerDate procedure retrieves the current date as defined by the Lava Server, coded in Julian date format.
PROCEDURE [PASCAL] ServerDate () : LONGINT;

Parameters
None.

Return values
The current Server date in Julian date format.

Remarks
If the mount mode is Exclusive, the date on the workstation / server on which the database is mounted will be
returned.

See also
GetServerDateTime, VDT, Miscellaneous Interfaces

Miscellaneous Interfaces

Extract VDT Time

The procedure Extract VDT_Time allows the extraction of the (Julian format) time portion of a VDT into
conventional hour-minute-second format.

PROCEDURE [_APICALL] Extract VDT Time (

pVDT : LONGREAL;
VAR pTime : TimeClass
)
Parameters
pVDT : A longreal (8 byte float) containing a standard Lava VDT
pTime : A reference TimeClass structure into which the decoded time values are placed

Return values
None.

Remarks
The integer portion (date portion) of the VDT is ignored.

The time coded into the TimeClass structure is in 24-hour format.

See also
JulianDate, JulianTime, VDT, GetServerDateTime, Miscellaneous Interfaces

Miscellaneous Interfaces

GregorianDate

The GregorianDate procedure extracts a standard date (year, month, day) from a given Julian date.

PROCEDURE [PASCAL] GregorianDate (pJulianDate : LONGINT;
VAR pDate : DateClass);
Parameters
pJulianDate : The Julian date to be decoded
pDate : A reference DateClass structure which receives the decoded date.

Return values
None.

Remarks
The given Julian date must be according to the Lava Julian date standard (see VDT).

The decoded date will be in the range 300.01.01 through 2999.12.31.

See also
JulianDate, JulianTime, VDT, GetServerDateTime, Miscellaneous Interfaces

Miscellaneous Interfaces

MonthDays

The MonthDays procedure returns the correct number of days in any specified month since the year 300, taking
into account all leap-years.

PROCEDURE [PASCAL] MonthDays (pYear, pMonth : INTEGER) : LONGINT;

Parameters
pYear : The required year
pMonth : The required month

Return values
The number of days in the given month.

Remarks
Provided that the input year is 300 or greater, this procedure will always return the correct number of days,
considering all standard or special leap-years.

See also
Miscellaneous Interfaces

Miscellaneous Interfaces

DayOfWeek

The DayOfWeek procedure returns the 1-based numeric representation of the day of the week given a Lava
Julian date. Sunday is coded as day 1.

PROCEDURE [PASCAL] DayOfWeek (pDate : LONGINT) : INTEGER;
Parameters

Return values
The 1-based day of the week for the nominated Julian date, with 1 representing Sunday.

Remarks
The given Julian date must be a Lava-standard Julian date.

See also
GetServerDateTime, VDT, Miscellaneous Interfaces

Miscellaneous Interfaces

Random

The Random procedure generates a random number between the limits provided.

PROCEDURE [PASCAL] Random (pLow > LONGINT;
pHigh : LONGINT
) : LONGINT;
Parameters
pLow : The lower limit of the returned random number
pHigh : The upper limit of the returned random number

Return values
A random number between the nominated limits.

Remarks
The Random procedure is a pseudo-random generator with very good scatter and a very low rate of repitition.

See also
Miscellaneous Interfaces

Miscellaneous Interfaces

HeapSort

The HeapSort procedure is a very high speed sort (order n log n) which sorts an arbitrary input into a sorted
form. The sort is in place in terms of the input data, but it does occupy stack memory for the heap management
of the sort.

PROCEDURE [PASCAL] HeapSort (N > LONGINT;
Less : CompareProc;
Swap : SwapProc);
Parameters
N : The number of items to be sorted
Less : A procedure (written by the caller) which returns TRUE if the first item referenced is
smaller than or precedes the second item in terms of the required sort order
Swap A procedure (written by the caller) which swaps the first and second referenced items

in the input data

Return values
None

Remarks
The user must specify how many items are in the input data, as this is crucial to the management of the heapsort.

The two procedures, Less and Swap, are caller-written and must comply with the interface defined in HeapSort
Procedure Types. The first, the CompareProc type, accepts a low and high index into the input data, and is
required to compare the two items and return TRUE (1) if the first item should precede the second item in terms
of the required sort order. The second, the SwapProc type, again accepts a low and high index, and swaps the
two items in the input data.

See also
Miscellaneous Interfaces

Miscellaneous Interfaces

ParseCommandLine

The ParseCommandLine procedure parses a conventional Windows command line into a searchable command
parameter array

PROCEDURE [PASCAL] ParseCommandLine (
pCmdAddress = LONGINT;
VAR pCmdParam - CommandLineType
)
Parameters
pCmdAddress The address of the command line as returned by the Windows API
GetCommandLineA() function
pCmdParam : A reference structure of type CommandLineType which receives the parsed
command line

Return values
None

Remarks
The command line address must be a reference to a valid command line.

The syntax provided for in the command line parameters includes :

. Parameter name prefixed by either *-* (dash) or */” (slash)

String values framed by double-or single quotes

String values unframed by quotes, de facto delimited by the commencement of the next parameter
Numeric values (integer and real)

Switches (no value to the parameter, the switch is the parameter presence or absence in the command
line

The general form of a parameter in the command line is /ParmName = ParmValue

See also
GetCommandParm, Miscellaneous Interfaces

Miscellaneous Interfaces

GetCommandParm

The GetCommandParm procedure searches a previously parsed command line (see ParseCommandL ine) for a
nominated parameter name, and returns the value of the parameter.

PROCEDURE [_APICALL] GetCommandParm (

VAR pCmdParam - : CommandLineType;
pldent : ARRAY OF CHAR;

VAR pvalue - ARRAY OF CHAR;
pNumericValue : POINTER TO LONGREAL;
pbCaselnsensitive BOOLEAN

) : BOOLEAN;
Parameters

pCmdParam : A reference variable of CommandLineType which contains the
results of the ParseCommandL.ine procedure

pldent : The parameter required

pValue : A reference string into which the value of the parameter (if found)
will be placed

pNumericValue : The address of a longreal (8 byte float) variable into which the
decoded numeric value of the parameter will be placed - nil if not
required

pbCaselnsensitive : A boolean flag set to TRUE if the parameter name search is to be

case insensitive

Return values
TRUE (1) if the command parameter is found, or FALSE (0) if not.

Remarks
The pldent string must be long enough to receive the value of the parameter

The pNumericValue address may be passed as nil (0) if a decode to numeric is not required.

See also
ParseCommandLine, Miscellaneous Interfaces

Miscellaneous Interfaces

BlockCRC

The BlockCRC procedure calculates a 32-bit CRC, or cyclic redundancy check (which may be incremental) for
the given memory block.

PROCEDURE [PASCAL] BlockCRC(pCount : LONGINT;
pSourceCRC : LONGINT;
pBufferAddress : LONGINT

) : LONGINT;
Parameters
pCount : The number of bytes to be calculated
pSourceCRC : The starting value for the CRC - zero (0) if this is the first block to be
calculated
pBufferAddress : The address of the buffer for which the CRC is to be calculated

Return values
The CRC for the nominated block of memory

Remarks

If a CRC is to be calculated incrementally, i.e. across a number of blocks of memory which will make up the
total block for which the CRC is required, the first call to BlockCRC should specify a pSourceCRC of zero -
subsequent calls to BlockCRC should specify the last value returned by BlockCRC as the starting CRC value.
The final value retuned for the last memory block is the CRC for the entire set of memory blocks.

See also
StringCRC, Miscellaneous Interfaces

Miscellaneous Interfaces

StringCRC

The StringCRC procedure calculates a CRC (cyclic redundancy check) for an ASCII string of characters.

PROCEDURE [PASCAL] StringCRC(VAR pString - : ARRAY OF CHAR) : LONGINT;
Parameters
pString : A reference string variable containing the character string for which the

CRC is required - the string must be null-terminated

Return values
The CRC for the nominated string.

Remarks
The given string must be null terminated, as the string processing algorithm terminates only when the first null
character is found.

By implication, this procedure will not work for Unicode strings, as there are often null values in Unicode
strings prior to the end of the string.

See also
BlockCRC, Miscellaneous Interfaces

Miscellaneous Interfaces

EndActivity

The EndActivity procedure terminates an activity window.

PROCEDURE [PASCAL] EndActivity () : LONGINT;

Parameters
None.

Return values
A standard rc (return code).

Remarks
EndActivity acts on an Activity window which must have been previously declared using the StartActivity
procedure.

See also
StartActivity, ShowActivity, Miscellaneous Interfaces

Miscellaneous Interfaces

ShowActivity

The Showactivity procedure refreshes an activity window, previously opened using the StartActivity procedure.

PROCEDURE [PASCAL] ShowActivity (pCaption ARRAY OF CHAR;

pText ARRAY OF CHAR);
Parameters
pCaption : An ASCII string defining the window caption for the activity window.
pText : An ASCII string to be displayed within the activity window
Return values
None
Remarks

An activity window must currently be open for this procedure to have any effect.

The pCaption string may be left empty (null in the first character) if the previous caption is to be left unchanged.
The text provided in the pText parameter will be displayed, centred, in the activity window.

The activity window is closed by using the EndActivity procedure.

See also
StartActivity, EndActivity, Miscellaneous Interfaces

Miscellaneous Interfaces

StartActivity

The StartActivity procedure opens an activity window, used to indicate process activity to the user.

PROCEDURE [PASCAL] StartActivity (
pXpos, pYpos, pWidth, pHeight, Alpha : LONGINT

) : LONGINT;
Parameters
pXpos X Window X position (left) in pixels
pYpos : Window Y position (top) in pixels
pWidth : Window width, in pixels
pHeight : Window height, in pixels
Alpha : Alphablend ratio (transparency) - 0 is totally opaque, and 100 is totally

transparent

Return values
A standard rc (return code).

Remarks
Only one activity window can be opened by any one thread at any one time. The window is refreshed using the
ShowActivity procedure, and terminated (closed) with the EndActivity procedure.

See also
ShowActivity, EndActivity, Miscellaneous Interfaces

MessageBox

Miscellaneous Interfaces

The MessageBox procedure displays an advanced, formatted message box with up to 4 custom label,
automatically sized buttons, and returns the user’s button selection to the caller.

PROCEDURE [PASCAL] MessageBox (pApplication

Parameters

pApplication

pCaption
pMsgText
pOwnerHandle
pXPos, pYPos
pWidth, pHeight
pButtonl
pButton1Text
pButton2
pButton2Text
pButton3
pButton3Text
pButton4
pButton4 Text
plmagelndex

Return values
The handle of the message box window

Remarks
The buttons to be used should be assigned from button 1 sequentially. For buttons not required, the button
constant should be set to 0 and the text to a null string (**).

See also

Miscellaneous Interfaces

ARRAY OF CHAR;

pCaption . ARRAY OF CHAR;
pMsgText = ARRAY OF CHAR;
pOwnerHandle : LONGINT;
pXPos, pYPos - LONGINT;
pwidth, pHeight = LONGINT;
pButtonl > LONGINT;
pButtonlText : ARRAY OF CHAR;
pButton2 : LONGINT;
pButton2Text - ARRAY OF CHAR;
pButton3 = LONGINT;
pButton3Text - ARRAY OF CHAR;
pButton4 - LONGINT;
pButton4Text - ARRAY OF CHAR;
pImagelndex : LONGINT
) : WinDef.HWND;

The name of the application invoking the message box (used for
tracking purposes)
The requested caption of the message box
The text to be displayed in the message box
The handle of the owner window
The X and Y (pixel) position for the message box
The requested width and height of the message window
A numeric constant to be returned if this button is pressed
Themmumdmxtmrmebmmn
A numeric constant to be returned if this button is pressed
The required text for the button
A numeric constant to be returned if this button is pressed
The required text for the button
A numeric constant to be returned if this button is pressed
The required text for the button
Not implemented at this time - reserved for future use. Should be set to zero

(0).

Miscellaneous Interfaces

ExtractFileName

The ExtractFileName procedure returns the filename from a full filepath string

PROCEDURE [PASCAL] ExtractFileName (pFilePath . ARRAY OF CHAR;
VAR pFileName : ARRAY OF CHAR
)
Parameters
pFilePath : The full filepath containing the required filename
pFileName : A reference string to receive the extracted filename

Return values
None

Remarks
The filename and extension are extracted and copied to the pFileName reference string.

Ensure that the reference string is long enough to receive the filename.

See also
Miscellaneous Interfaces

Miscellaneous Interfaces

SplitFullName

The SplitFullName procedure divides a complete filepath string into the separate portions : drive, path,
filename, extension.

PROCEDURE [PASCAL] SplitFullName (pFilePath ARRAY OF CHAR;
VAR pDrive CHAR;
VAR pPath ARRAY OF CHAR;

VAR pFileName
VAR pExtension

ARRAY OF CHAR;
ARRAY OF CHAR;

VAR pUNC ARRAY OF CHAR
):
Parameters
pFilePath : The full filepath to be split
pDrive : A reference character variable to receive the drive character
pPath : A reference string to receive the folder path, excluding the drive character
pFileName : A reference string to receive the filename, excluding extension
pExtension : A reference string to receive the file extension
pUNC : A reference string to receive the UNC computer specification

Return values
None

Remarks
If the path is a local path, the drive character is returned in the pDrive character, and the pUNC reference string
is set to a null string.

If the path is a UNC path, the UNC computer location is returned in the pUNC string, and the pDrive character
is set to null (0).

See also
Miscellaneous Interfaces

Miscellaneous Interfaces

Lava Backup System

The Lava Backup System is presented through a default interface which permits backup and restore of
individual schemas. The Backup API is presented to permit advanced programmers to write more specific
backup and restore routines where there is such a requirement.

CreateBackupSet
BackupObjectData

FinaliseBackup

OpenBackupSet
RestoreObjectData

CloseBackupSet
SetBackupFolder

See also
API Categories

Lava Backup System

CreateBackupSet

The CreateBackupSet procedure is the primary or first call in a sequence of procedure calls required to define a
Lava backup. CreateBackupSet initializes the new backup and names the set.

PROCEDURE [PASCAL] CreateBackupSet(

pSession_id = LONGINT;
VAR pDatasetHandle > LONGINT;
pEncryptionKey : ARRAY OF CHAR;
pDataSet : ARRAY OF CHAR;
pSchema - ARRAY OF CHAR;
pbAppendTimestamp : BOOLEAN
) - LONGINT;
Parameters
pSession_id : A valid session ID
pDatasetHandle : A reference longint (dword) variable which receives the new data
set handle
pEncryptionKey : A string specification for the encryption key to be applied to the
backup
pDataSet : A string identifier for the backup set
pSchema : The schema to which the tables to be backed up belong
pbAppendTimestamp : A boolean flag indicating whether the current Date Time should be

appended to the dataset name

Return values
A standard rc (return code).

Remarks
The nominated session must have adequate access privilege to be allowed to read all tables to be nominated for
the backup set.

Only one backup set can be created by a given client application at any one time - i.e. CreateBackupSet must be
followed by 1 or more calls to BackupObjectData, followed by a call to FinaliseBackup. Different clients may
execute backups simultaneously to one another.

If no encryption is required, the encryption key may be set to a null string.

The encryption key will be stored in an encrypted form within the backup header, and the backup set will only
be restorable if the correct encryption key is specified. Care should be taken to ensure that the intended
encryption key is not accidentally mis-typed by the user, as such a backup set cannot be restored.

The backup set is created in the folder nominated as the backup folder for the active client - see
SetBackupFolder. If no default backup folder has been set, the procedure aborts and returns an error code.

The dataset name specified in pDataSet must be unique across all currently existing backups in the current
backup folder.

The pSchema parameter should specify the schema to which the backup tables belong. Although it is possible
to create a backup set spanning schemas, as a rule this is discouraged as it becomes more difficult to select a
valid and contained backup set if the tables in the backup are not clearly delineated and belong to a single
functional group, which is typically limited by schema boundaries.

If pbAppendTimestamp is TRUE, the current server date time (see GetServerDateTime) is appended to the
nominated data set name. This will, under all circumstances, ensure that the dataset name is unique.
Any occurrences of the characters “/* (forward slash) or *:* (colon) in the specified dataset name will be replaced

Lava Backup System
by *_” (underscore) as these characters are illegal within Windows filenames.
The backup file created will automatically acquire the extension .LBS, for Lava Backup Set.
See also

BackupObjectData, FinaliseBackup, OpenBackupSet, RestoreObjectData, CloseBackupSet, SetBackupFolder,
Lava Backup System

Example code
Backup Set Creation

Lava Backup System

BackupObjectData

The BackupObjectData procedure includes a given object (table) into a backup set currently being created.

PROCEDURE [PASCAL] BackupObjectData (pSession_id = LONGINT;
pObject id = LONGINT;
pSystem - BOOLEAN;
pForce_id - BOOLEAN;
pEncrypted : BOOLEAN

) - LONGINT;
Parameters
pSession_id : A valid session ID
pObiject _id : The object ID representing the table to be included in the backup set
pSystem : (not for application programmer use - should be set to FALSE)
pForce_id : (not for application programmer use - should be set to FALSE)
pEncrypted : A boolean indicator which enables or disables data encryption for this table

Return values
A standard rc (return code).

Remarks

BackupObjectData may only be invoked after CreateBackupSet has been called and has returned a zero return
code. If this is not the case, the results from this call will be unpredictable and probably unusable by subsequent
backup procedures.. See the example code for a typical backup sequence.

A maximum of 100 tables may be included in a single backup - an attempt to include more than 100 tables will
result in an error return, and no action will be taken.

For Client mount (the default mount method for a client application) the pObject_id must refer to a table which
has been distributed from the server (see Distributed Client Operation). If not, the backup image for this table
will be empty and probably invalid.

If the pEncrypted flag is set to FALSE (0), the image for this table within the backup will be unencrypted
regardless of whether an encryption key was asserted in the call to CreateBackupSet.

See also
CreateBackupSet, FinaliseBackup, OpenBackupSet, RestoreObjectData, CloseBackupSet, SetBackupFolder,
Lava Backup System

Example code
Backup Set Creation

Lava Backup System

FinaliseBackup

The FinaliseBackup procedure actually performs the requested backup based on information supplied through
CreateBackupSet and BackupObjectData.

PROCEDURE [PASCAL] FinaliseBackup (pDatasetHandle : LONGINT
) - LONGINT;
Parameters
pDatasetHandle : The handle to the current backup dataset as returned by CreateBackupSet

Return values
A standard rc (return code).

Remarks
The backup set must be valid and have been set up correctly - see the example code for a valid setup sequence.

The FinaliseBackup procedure will extract the data from the nominated tables included in the backup, and create
the backup set in the nominated Windows file.

The backup set is compressed using the Lava compression engine, and individual table images are encrypted if
this was specified in earlier calls.

See also
CreateBackupSet, BackupObjectData, OpenBackupSet, RestoreObjectData, CloseBackupSet, SetBackupFolder,
Lava Backup System

Example code
Backup Set Creation

Lava Backup System

OpenBackupSet

The OpenBackupSet procedure opens an existing backup set in order to execute a restore of the tables included
in the backup.

PROCEDURE [PASCAL] OpenBackupSet(

pDataSet ARRAY OF CHAR;

VAR pDatasetHandle - LONGINT;
VAR pBackupHeader : BackupSetType;
VAR pBackupObjectArray : ObjectArrayType;
pEncryptionKey : ARRAY OF CHAR
) - LONGINT;
Parameters
pFileName : The Windows filename for the required backup set.
pDatasetHandle : A reference longint (dword) variable which receives the handle of
the backup set
pBackupHeader : A reference structure which receives the backup header for the
nominated backup
pBackupObjectArray : A reference array of structures which receives the backup object
array
pEncryptionKey : A string specification for the encryption key to be applied to the
backup

Return values
A standard rc (return code).

Remarks
The backup folder must be correctly set to the folder containing the required backup set, using the

SetBackupFolder procedure.

If the nominated backup set as specified in the pDataSet parameter is not found in the current backup folder, an
error code is returned and the open fails.

The encryption key specified in the pEncryptionKey parameter must concur exactly (including character case)
with the encryption key specified when the backup set was created using the CreateBackupSet procedure.

The object array returned in the pBackupObjectArray parameter specifies the objects included in the backup.
See also

CreateBackupSet, BackupObjectData, FinaliseBackup, RestoreObjectData, CloseBackupSet, SetBackupFolder,
Lava Backup System

Example code
Backup Set Restore

Lava Backup System

RestoreObjectData

The RestoreObjectData procedure restores a single table from the backup set currently open after calling the
OpenBackupSet procedure.

PROCEDURE [PASCAL] RestoreObjectData (

pSession_id = LONGINT;
pDatasetHandle > LONGINT;
VAR pBackupHeader : BackupSetType;
VAR pBackupObjectArray : ObjectArrayType;
pObjectindex : LONGINT;
pTruncate = BOOLEAN
) - LONGINT;
Parameters
pSession_id : A valid session ID
pDatasetHandle : The handle of an open backup set
pBackupHeader : The backup header for the open backup set
pBackupObjectArray : The object array for the open backup set
pObjectindex : The 1-based index of the object to be restored from the backup
pTruncate : A boolean flag indicating whether the target table is to be truncated
(alternatively dropped)

Return values
A standard rc (return code).

Remarks
The backup set must be currently open for the restore to operate.

The nominated object index must be a valid index for an object contained in the backup.

If the pTruncate option is TRUE, the target table is merely truncated and the backup data restored to the existing
table. For this option to work, it is essential that the table layout (column layout) be identical to that at the time
the backup was made. If this is not the case, the pTruncate option must be set to FALSE, to allow the backup to
re-create the table in order for the column layout to match the backup data.

If the table is re-created during the restore process, the object ID for the table is likely to change as a result of
the restore.

Once all the required tables have been restored, the backup set should be closed using the CloseBackupSet
procedure.

See also
CreateBackupSet, BackupObjectData, FinaliseBackup, OpenBackupSet, CloseBackupSet, SetBackupFolder,
Lava Backup System

Example code
Backup Set Restore

Lava Backup System

CloseBackupSet

The CloseBackupSet procedure closes a backup previously opened for restore purposes.

PROCEDURE [PASCAL] CloseBackupSet(pDatasetHandle > LONGINT);
Parameters
pDatasetHandle : The handle of an open backup set

Return values
A standard rc (return code).

Remarks
If the backup set is open, the procedure closes the backup set and returns 0. If the provided handle is not valid,
the procedure fails and returns an error code.

See also
CreateBackupSet, BackupObjectData, FinaliseBackup, OpenBackupSet, RestoreObjectData, SetBackupFolder,
Lava Backup System

Example code
Backup Set Creation

Lava Backup System

SetBackupFolder

The SetBackupFolder procedure sets the current (default) backup folder, in which any backup set initialized by
CreateBackupSet or opened by OpenBackupSet will be located.

PROCEDURE [PASCAL] SetBackupFolder(pFolder : ARRAY OF CHAR);

Parameters
pFolder : A complete Windows file path

Return values
A standard rc (return code).

Remarks
The Lava backup folder is unconditionally set to the folder path specified - the onus is on the caller to ensure
that the path is valid prior to creating or opening a backup set.

See also
CreateBackupSet, BackupObjectData, FinaliseBackup, OpenBackupSet, RestoreObjectData, CloseBackupSet,
Lava Backup System

Example code
Backup Set Creation, Backup Set Restore

Lava DataGrid Control

Lava DataGrid Control

See also
API Categories

CreateGrid

PROCEDURE [PASCAL] CreateGrid (pParent : LONGINT;
pGridHandle : LONGINT;
pXPos : LONGINT;
pYPos = LONGINT;
pWidth : LONGINT;
pHeight : LONGINT;
pUserSession_id : LONGINT;
pObjectSession_id : LONGINT;
pObject id : LONGINT;
pGridldent . LONGINT;
pColumnHeader : BOOLEAN;
pRowlndicator : BOOLEAN;
pGridLines : BOOLEAN

) = LONGINT (* Grid handle *);
Parameters

Return values
The handle of the Grid window

Remarks

Lava DataGrid Control

RefreshGrid

PROCEDURE [PASCAL] RefreshGrid(pGridHandle : LONGINT;
pObject id = LONGINT;
pSession_id : LONGINT;
plnstanceldent : LONGINT

) : LONGINT;

Parameters

Return values
A standard rc (return code).

Remarks

SetColumnWidth

PROCEDURE [PASCAL] SetColumnWidth(

Parameters

Return values
None

Remarks

pGridHandle
pColumnSequence
pWidth

Lava DataGrid Control

LONGINT;
LONGINT;
LONGINT) ;

Lava DataGrid Control

SetColumnTitle

PROCEDURE [PASCAL] SetColumnTitle(pGridHandle : LONGINT;
pColumnSequence > LONGINT;
pTitle : ARRAY OF CHAR);
Parameters

Return values
None

Remarks

SetGridRow

PROCEDURE [PASCAL] SetGridRow(pGridHandle :

pRow
pHighlight
pNotify
pWrap

)

Parameters

Return values
None

Remarks

LONGINT;
LONGINT;
BOOLEAN;;
BOOLEAN;;
BOOLEAN

Lava DataGrid Control

Lava DataGrid Control

GetGridRow

PROCEDURE [PASCAL] GetGridRow(pGridHandle : LONGINT;
VAR pGridRow > LONGINT;
VAR pTableRow : LONGINT
) : LONGINT;

Parameters

Return values
A standard rc (return code).

Remarks

Lava DataGrid Control

SetColumnVisible

PROCEDURE [PASCAL] SetColumnVisible (pGridHandle = LONGINT;
pColumnSequence = LONGINT;
pbVisible : BOOLEAN

)

Parameters

Return values
None

Remarks

Lava DataGrid Control

Lava Compression

The Lava Compression library is presented to allow the user to perform fast, high-ratio compression on arbitrary
memory segments. Compression ratios are comparable with those achieved in archiving packages like WinZip,
although typically about 5% to 10% lower. However, the speed of compression is very high - on modern
workstations, the compression algorithm will compress and decompress 1 Mb of data in approximately 0.3
seconds.

See also
API Categories

Compress

The Compress procedure accepts the address and size of a memory segment, and compresses (and optionally
encrypts) the data into a target memory segment which is allocated on the heap.

PROCEDURE [PASCAL] Compress (

pSourceAddress = LONGINT;
pSourceSize = LONGINT;
VAR pTargetAddress = LONGINT;
VAR pTargetSize : LONGINT;
pHeap - LONGINT;
pKey : LavaRunX.QUADINTEGER
) : LONGINT;
Parameters
pSourceAddress : The base address of the memory segment to be compressed
pSourceSize : The size (in bytes) of the source memory segment
pTargetAddress : A reference longint which receives the address of the compressed
segment
pTargetSize : The size (in bytes) of the compressed data
pHeap : A valid handle to a Windows heap which is large enough to contain
the compressed data
pKey : The encryption key (an 8-byte integer) - optional

Return values
A standard rc (return code).

Remarks
The source segment must be in memory at the time of compression.

The target data will be allocated on the heap provided - therefore, this specified heap handle must have
sufficient free space to accept the compressed data.

If encryption of the target data is not required, the encryption key (pKey) should be specified as 0.

Lava Compression

Decompress

The Decompress procedure is provided to allow decompression of data compressed using the Compress
algorithm.

PROCEDURE [PASCAL] Decompress (

pSourceAddress . LONGINT;
pSourceSize . LONGINT;
VAR pTargetAddress : LONGINT;
pTargetSize : LONGINT;
pHeap = LONGINT;
pKey : LavaRunX_.QUADINTEGER
) : LONGINT;
Parameters
pSourceAddress : The base address of the compressed data segment
pSourceSize : The size (in bytes) of the compressed data
pTargetAddress : A reference longint which receives the address of the
decompressed data
pTargetSize : The size (in bytes) of the decompressed data, provided by the caller
pHeap : A valid handle to a Windows heap which is large enough to contain
the decompressed data
pKey : The encryption key (an 8-byte integer)

Return values
A standard rc (return code).

Remarks

The caller must provide the target size of the decompressed data. This avoid the decompression algorithm
having to re-allocate memory or allocate more memory than required, thereby improving performance and
memory utilization.

The heap handle provided must have enough free space for the uncompressed data - since compression ratios
can be very high in some cases, it is important to ensure that this is true.

The encryption key provided must be the same as when compression was performed, or the decompression will
fail (or, in the worst case, cause memory violations due to an invalid compressed image after incorrect
decryption)

Lava Compression

Lava Editor Control

The Lava Editor Control is a self-contained control presenting an advanced text editor within a specified
window. The control has the ability to load and save Windows text files, and has all the features that would be
required from a programming editor.

AppendText

ClearContent
ClearSelection

CloseEditWindow

Copy

@)

ut

GetSelectedText
GotoOffset
GotoPos
LoadFile
NewEditWindow
Paste

Replace
ResetAllBookmarks

ResetBookmark
ResizeWindow
SaveFile
Search
SearchFiles
SelectSegment
SetBookmark
SetGutter
SetScrollBar
TextExtract

TextModified

See also
API Categories

Lava Editor Control

TextExtract

The TextExtract procedure extracts the entire textual content of a nominated edit window to an allocated
memory space.

PROCEDURE [PASCAL] TextExtract (hEdit : WinDef.HWND;
pHeapHandle > LONGINT;
VAR pVirtualAddress > LONGINT;
VAR pBytes = LONGINT
) : LONGINT;
Parameters
hEdit : The handle of an existing edit window
pHeapHandle A valid Windows heap handle, which will be used for allocating the
memory to receive the extracted text
pVirtualAddress : A reference longint (dword) variable which receives the address of the
allocated memory
pBytes X The total size of the extracted text in bytes

Return values
A standard rc (return code).

Remarks
The edit handle supplied must be current.

The heap handle supplied must have sufficient free space to accommodate the full text to be extracted. If no
other heap handle is available, the caller may use the Windows API function GetProcessHeap() which returns
the current process heap handle.

The onus is on the caller to free the allocated memory once it is no longer required - this must be done using the
Windows API function HeapFree, and the same heap handle must be used as was passed to TextExtract

See also
Lava Editor Control

Lava Editor Control

AppendText

The AppendText procedure appends nominated text to the specified edit window at the end of any existing text.

PROCEDURE [PASCAL] AppendText (hEdit : WinDef.HWND;
VAR pText - : ARRAY OF CHAR
) : LONGINT;
Parameters
hEdit : The handle of an existing edit window
pText : A reference string variable containing null-terminated text

Return values
A standard rc (return code).

Remarks
The nominated text may contain linefeed characters (10H) to delimit text lines.

See also
Lava Editor Control

Lava Editor Control

ClearContent

The ClearContent procedure clears an edit window.

PROCEDURE [PASCAL] ClearContent (heEdit : WinDef.HWND) : LONGINT;

Parameters
hEdit : The handle of an existing edit window

Return values
A standard rc (return code).

Remarks
The content of the edit window is irretrievably lost

See also
Lava Editor Control

SearchFiles

Lava Editor Control

The SearhFiles procedure provides a mechanism for searching an arbitrary number of files in a folder or a folder

tree, with wildcard features provided.

PROCEDURE [PASCAL] SearchFiles(pSession_id

Parameters
pSession_id
pSearchFolder
pSearchSubfolders

pFileSpec

pSearchString
pMatchCount

bMatchCase
bNewSearch

Return values

: LONGINT;
pSearchFolder : ARRAY OF CHAR;
bSearchSubfolders : BOOLEAN;
pFileSpec : ARRAY OF CHAR;
pSearchString . ARRAY OF CHAR;
pMatchCount : LONGINT;
bMatchCase : BOOLEAN;
bNewSearch : BOOLEAN

) - BOOLEAN;

A valid session 1D

The folder within which the file(s) to search are located

A boolean flag indicating whether subfolders to the nominated
folder in pSearchFolder should be searched

A (potentially wildcarded) file specification for the file(s) to be
searched

The string to be searched for, with provision for wildcards

The maximum number of matches (hits) to be permitted in each
file searched

A boolean flag indicating whether the search is case sensitive
A boolean flag indicating whether the match table is to be
truncated prior to commencing the search

TRUE (1) if any hits are found for the nominated search in any of the nominated files.

Remarks

The search string may contain wildcards. Supported wildcards are * (star) which represents any number of any
characters, and ? (question mark) representing any one character.

The matches (if any are found) are added to the SearchMatch table in the Util schema (see Util.Searchmatch for

details of the match table layout).

If bNewSearch is TRUE, the Util.Searchmatch table is truncated before the search is commenced.

See also
Lava Editor Control

Lava Editor Control

Search

The Search procedure searches the text in the nominated edit window from the cursor position to the first match.

PROCEDURE [PASCAL] Search (hEdit : WinDef.HWND;
pSearch . ARRAY OF CHAR;
pMatchcase - BOOLEAN;
pDown : BOOLEAN;
pWholeWords : BOOLEAN

) : BOOLEAN;
Parameters
hEdit : The handle of an existing edit window
pSearch : The string to be searched for, with provision for wildcards
pMatchCase : A boolean flag indicating whether the search is case sensitive
pDown : A boolean flag indicating the search direction
pWholeWords : A boolean flag indicating whether only whole words are a valid match

Return values
TRUE (1) if any hits are found for the nominated search.

Remarks

The search string may contain wildcards. Supported wildcards are * (star) which represents any number of any
characters, and ? (question mark) representing any one character.

If the pDown parameter is TRUE, the search is performed downward in the text.

If the pWholeWords parameter is TRUE, only complete words are considered a match.

See also
Lava Editor Control

Lava Editor Control

Replace

The Replace procedure performs a search-and-replace on the nominated edit window

PROCEDURE [PASCAL] Replace (hEdit : WinDef.HWND;
pSearch . ARRAY OF CHAR;
pReplace : ARRAY OF CHAR;
pMatchcase - BOOLEAN;
pDown : BOOLEAN;
pWords BOOLEAN;
pReplaceAll = BOOLEAN;
pbConfirm = BOOLEAN
) : LONGINT;
Parameters
hEdit : The handle of an existing edit window
pSearch X The string to be searched for, with provision for wildcards
pReplace X The replacement string
pMatchCase : A boolean flag indicating whether the search is case sensitive
pDown : A boolean flag indicating the search direction
pWords : A boolean flag indicating whether only whole words are a valid match
pReplaceAll : A boolean flag indicating whether the replacement is only for the first or for
all matched occurrences
pbConfirm : A boolean flag indicating whether a confirmation dialog must be invoked to

request confirmation of each potential replacement

Return values
The number of replacements executed

Remarks

The search string may contain wildcards. Supported wildcards are * (star) which represents any number of any
characters, and ? (question mark) representing any one character.

If the pDown parameter is TRUE, the search is performed downward in the text.

If the pWords parameter is TRUE, only complete words are considered a match.

If pReplaceAll is TRUE, the replacement algorithm continues to the end of the text; if FALSE only the first
match occurrence is replaced

If pbConfirm is TRUE the Replace procedure invokes a confirmation dialog for each match (potential
replacement) for user confirmation.

See also
Lava Editor Control

Lava Editor Control

GotoPos

The GotoPos procedure places the cursor at the required row and column in the text.

PROCEDURE [PASCAL] GotoPos (hEdit : WinDef.HWND;
pRow > LONGINT;
pColumn : LONGINT

) : INTEGER;

Parameters

hEdit : The handle of an existing edit window
pRow : The required row
pColumn : The required column

Return values
A standard rc (return code).

Remarks
If either the row or column is invalid (less than zero or greater than the highest row or column) the cursor is
placed at the end of the text.

See also
Lava Editor Control

Lava Editor Control

GotoOffset

The GotoOffset procedure places the cursor at the given byte offset into the text (from the first character)

PROCEDURE [PASCAL] GotoOffset (hEdit : WinDef.HWND;
pOffset = LONGINT
) : LONGINT;
(* The edit caret is placed at the byte offset pOffset from row 1, column 1. *)
Parameters
hEdit : The handle of an existing edit window
pOffset X The required byte offset

Return values
A standard rc (return code).

Remarks
The byte offset is the offset from the first byte (row 1 column 1) of the text. The offset includes linefeed
characters at the end of each line.

See also
Lava Editor Control

Lava Editor Control

Copy

The Copy procedure copies the selected region in the text into the Windows clipboard.
PROCEDURE [PASCAL] Copy (hEdit : WinDef_HWND) : LONGINT;
Parameters

hEdit : The handle of an existing edit window

Return values
A standard rc (return code).

Remarks
If no text is currently selected in the nominated edit window, the procedure has no effect and the clipboard is left
unchanged.

See also
Lava Editor Control

Lava Editor Control

GetSelectedText

The GetSelectedText procedure copies the currently selected text in the nominated edit window into the
provided text buffer.

PROCEDURE [PASCAL] GetSelectedText(hEdit : WinDef.HWND;
VAR pBuffer : ARRAY OF CHAR
) : LONGINT;
Parameters
hEdit : The handle of an existing edit window
pBuffer : A reference text buffer to receive the copied text

Return values
A standard rc (return code).

Remarks
The provided buffer must be long enough to receive the selected text.

If no text is currently selected in the nominated edit window, the provided text buffer is left unchanged.

See also
Lava Editor Control

Lava Editor Control

SelectSegment

The SelectSegment procedure selects the text as delimited in the nominated edit window.

PROCEDURE [PASCAL] SelectSegment(
hEdit : LONGINT;
pStartRow, pStartColumn, pEndRow, pEndColumn : LONGINT);

Parameters
hEdit : The handle of an existing edit window
pStartRow : The starting row for the selection region
pStartColumn The starting column for the selection region
pEndRow : The end row for the selection region
pEndColumn : The end column for the selection region

Return values
None

Remarks
If any of the specified row or column boundaries are invalid, the selection request is ignored.

See also
Lava Editor Control

Lava Editor Control

Paste

The Paste procedure pastes the content of the clipboard into the text of the nominated edit window at the current
cursor position.

PROCEDURE [PASCAL] Paste (hEdit : WinDef_HWND) : LONGINT;

Parameters
hEdit : The handle of an existing edit window

Return values
A standard rc (return code).

Remarks
If the current clipboard content is not of type text, the procedure has no effect.

See also
Lava Editor Control

Lava Editor Control

Cut

The Cut procedure cuts the currently selected text in the nominated edit window to the clipboard.
PROCEDURE [PASCAL] Cut (hEdit : WinDef.HWND) : INTEGER;
Parameters

hEdit : The handle of an existing edit window

Return values
A standard rc (return code).

Remarks
If no text is currently selected in the nominated edit window, the procedure leaves the clipboard unaffected.

See also
Lava Editor Control

Lava Editor Control

ClearSelection

The ClearSelection procedure deletes the current selection region in the nominated edit window.

PROCEDURE [PASCAL] ClearSelection (hEdit : WinDef.HWND) : INTEGER;

Parameters
hEdit : The handle of an existing edit window

Return values
A standard rc (return code).

Remarks
If no text is currently selected in the nominated edit window, the procedure exits without any changes to the

text.

See also
Lava Editor Control

Lava Editor Control

NewEditWindow

The NewEditWindow procedure creates a new edit window with the window limits specified. The window is
empty after creation.

PROCEDURE [PASCAL] NewEditWindow (Parent : WinDef.HWND;
bReadOnly - BOOLEAN;
pFont : WinDef._HWND

) : WinDef.HWND;

(* Creates a new editor window. The document may be flagged as bReadOnly. If the pFont is non-zero

the nominated font is used as the default font for the document *)

Parameters
Parent X The handle of the parent window to the created edit window.
bReadOnly : A boolean flag indicating whether the edit window is to be editable or read-
only
pFont X If non-zero, the font for the edit window uses the nominated font handle

Return values
The handle of the new edit window.

Remarks
If the bReadOnly flag is TRUE, no text modification will be supported in the created edit window.

If the pFont parameter is zero, the default edit font is used.

See also
Lava Editor Control

Lava Editor Control

ResizeWindow

The ResizeWindow procedure resizes the nominated edit window to new limits.

PROCEDURE [PASCAL] ResizeWindow (hEdit : WinDef.HWND;
pLeft - INTEGER;
pTop : INTEGER;
pWidth : INTEGER;
pHeight : INTEGER);

Parameters

hEdit : The handle of an existing edit window
pLeft : The required left (pixel) position
pTop : The required top (pixel) position
pWidth : The required pixel width

pHeight : The required pixel height

Return values

None

Remarks

If any of the specified limits are invalid, the edit window is left unchanged.

See also
Lava Editor Control

Lava Editor Control

SetGutter

The SetGutter procedure specifies whether the nominated edit window should be configured with a gutter for
bookmark indicators.

PROCEDURE [PASCAL] SetGutter(hEdit WinDef_HWND;

bGutter BOOLEAN) ;
Parameters
hEdit : The handle of an existing edit window
bGutter : A boolean flag indicating the requirement for a gutter.

Return values
None

Remarks
If the bGutter value is FALSE, any bookmarks set in the text within the edit window will not be visibly
indicated.

See also
Lava Editor Control

Lava Editor Control

SetScrollBar

The SetScrollBar procedure sets the horizontal and vertical scroll bars on or off.

PROCEDURE [PASCAL] SetScrollBar(hEdit WinDef_HWND;

pbVertical, pbHorizontal BOOLEAN) ;
Parameters
hEdit : The handle of an existing edit window
pbVertical : A boolean flag indicating the requirement for a vertical scrollbar
pbHorizontal : A boolean flag indicating the requirement for a horizontal scrollbar

Return values
None

Remarks
The scroll bars in a new edit window are enabled by default, but can be disabled by setting the respective
parameter to FALSE.

See also
Lava Editor Control

Lava Editor Control

CloseEditWindow

The CloseEditWindow procedure closes the nominated edit window.

PROCEDURE [PASCAL] CloseEditWindow (hEdit : WinDef.HWND);
Parameters
hEdit : The handle of an existing edit window

Return values
None

Remarks
The nominated edit window is closed regardless of content and modification status - if the content of the
window must be saved before closing, the SaveFile must be called explicitly before calling CloseEditWindow.

See also
Lava Editor Control

Lava Editor Control

TextModified

The TextModified procedure returns the current modification status for the nominated edit window.
PROCEDURE [PASCAL] TextModified (hEdit : WinDef.HWND) : BOOLEAN;

Parameters
hEdit : The handle of an existing edit window

Return values
TRUE (1) if the content of the edit window has changed since last load or save, FALSE (0) otherwise.

Remarks

Modification is considered to be TRUE if any action has taken place which has left the content of the edit
window different from when the window was opened using NewEditWindow, or the content was saved using
SaveFile.

See also
Lava Editor Control

Lava Editor Control

LoadFile

The LoadFile procedure loads the contents of a specified Windows file into the nominated edit window.

PROCEDURE [PASCAL] LoadFile (hEdit WinDef_HWND;

pFileName WinDef._LPSTR
) : INTEGER;
Parameters
hEdit : The handle of an existing edit window
pFileName X The filename (and path) of the file to be loaded

Return values
A standard rc (return code).

Remarks
The file content is loaded into the edit window regardless of current content - any content prior to the load
request is discarded.

See also
Lava Editor Control

Lava Editor Control

SaveFile

The SaveFile procedure saves the content of the nominated edit window to the nominated Windows file.

PROCEDURE [PASCAL] SaveFile (hEdit WinDef_HWND;

pFileName WinDef._LPSTR
) : INTEGER;
Parameters
hEdit : The handle of an existing edit window
pFileName X The filename (and path) of the file to be loaded

Return values
A standard rc (return code).

Remarks
If the specified file does not exist, it is created. If it exists, the content is replaced by the content of the edit
window.

After the save request has been successfully executed, the modification status of the edit window is set to
FALSE.

See also
Lava Editor Control

Lava Editor Control

SetBookmark

The SetBookmark procedure sets a bookmark in the nominated edit window.

PROCEDURE [PASCAL] SetBookmark (hEdit : LONGINT;
pRow > LONGINT;
pType = LONGINT

) : LONGINT;
Parameters
hEdit : The handle of an existing edit window
pRow : The row at which a bookmark is to be set
pType X The type of bookmark to be set (see Editor Bookmark Types)

Return values
A standard rc (return code).

Remarks
If the specified row is invalid, no action is taken and an error code is returned.

See also
Lava Editor Control

Lava Editor Control

NextBookmark

The NextBookmark procedure moves the cursor (insertion point) in the nominated edit window to the next
bookmark downward in the text from the current cursor position.

PROCEDURE [PASCAL] NextBookmark (hEdit : LONGINT
) : LONGINT;
Parameters
hEdit : The handle of an existing edit window

Return values
A standard rc (return code).

Remarks
If no bookmark is found downward in the document, the cursor remains at its current position, and the
procedure returns an error code.

See also
Lava Editor Control

Lava Editor Control

PreviousBookmark

The PreviousBookmark procedure moves the cursor (insertion point) in the nominated edit window to the
previous bookmark upwards in the text from the current cursor position.

PROCEDURE [PASCAL] PreviousBookmark (hEdit : LONGINT
) : LONGINT;
Parameters
hEdit : The handle of an existing edit window

Return values
A standard rc (return code).

Remarks
If no bookmark is found upwards in the document, the cursor remains at its current position, and the procedure
returns an error code.

See also
Lava Editor Control

Lava Editor Control

ResetBookmark

The ResetBookmark procedure resets a bookmark at the specified row in the nominated edit window.

PROCEDURE [PASCAL] ResetBookmark (hEdit : LONGINT;
pRow LONGINT
) : LONGINT;
Parameters
hEdit : The handle of an existing edit window
pRow : The row at which a bookmark is to be reset

Return values
A standard rc (return code).

Remarks
If no bookmark is found at the specified row, an error code is returned.

See also
Lava Editor Control

Lava Editor Control

ResetAlIBookmarks

The ResetAllBookmarks procedure resets any bookmarks currently set in the nominated edit window.

PROCEDURE [PASCAL] ResetAllBookmarks (hEdit : LONGINT
) : LONGINT;
Parameters
hEdit : The handle of an existing edit window

Return values
A standard rc (return code).

See also
Lava Editor Control

Lava Editor Control

The Lava System Schemas

This chapter describes pertinent details and relations in the Lava system schemas, which may be used by
administrators and advanced programmers to obtain information on various aspects of the Lava system.

The Lava database kernel is entirely self-driven, and all information used and managed by the kernel is stored in
conventional Lava data tables. There are no custom lists or queues of any sort in the kernel, and information
about any aspect of the entire database may be obtained entirely from the system tables, provided that the table
layout and necessary relations are well understood.

The Lava kernel itself is divided into several schemas, of which the Backup, Event, Parse and System schemas
are described below. The Linker schema, used exclusively by the Lava Linker, is documented in a separate
reference (to be released shortly) dealing only with this topic. The remainder of the default kernel schemas are
not described in this reference, as they are not utilized by the Lava database kernel itself, and therefore neither
influence the operation of the kernel nor have any value in determining system operational attributes.

In all cases below, only tables which have information of value to administrators, programmers or advanced
users are described. In each of these schemas, other tables are present which are used by the Lava database
kernel, but which do not have information which can easily be interpreted at user level.

Schematic Conventions
In the entity-relation diagrams in this chapter, the following conventions apply :

The “many” end of a many-to-one relationship is indicated by a ball on the relation line
Tables pertinent to interpreting the diagram but not central to the theme are presented unexpanded; i.e.
only the table name is shown without column details.

. In certain cases a pseudo-column, Version, is listed where the detailed column list in the textual
documentation will list the individual columns Row_status, ID, VDT, User_id and Cache_id. The
Version pseudo-column is a macro in the data dictionary utility which produces the standard
identification columns.

The following schema views are provided :

Backup Schema

Event Schema
Parse Schema

System Schema : Relational Inteqgrity

System Schema : User / Session Tables

System Schema : Objects / Tables

The tables described in this section are listed alphabetically below.

Table Schema
SOL_ColumnNode Parse
SQL_FilterNode Parse

SQL_ObjectNode
SQL _ParseRoot

SQL_PlanList
SQL_ValueL.ist

Sys_Alias
Sys BackupObject

Sys_BackupSet

Sys_Cache
Sys ColumnBufferPool

Sys_Event_Log
Sys_Event_Type
Sys_Locks

Sys_Objects
Sys_ObijectPrivilege

Sys_RelationColumns

Sys_Relations
Sys_Reserve
Sys_Schemas
Sys_Sessions

Sys Table Columns

Sys_Tables
Sys_Threads
Sys_Transactions

Sys UserObjectAccess

Sys_Users

Parse

Parse

Parse

Parse

System
Backup
Backup
System
System
Event

Event

System
System
System
System
System
System
System
System
System
System
System
System
System

System

Lava Editor Control

Backup Schema

Sys_BackupSet

Yersion

D ataseth ame . B

Description

DbjectCount

D ataSize_low

DataSize_high

Schema

Status

ElLicenced ! .

Encryptionkey Spz_BackupObject
Yersion
BackupSet_id
Objectt ame
ObjectTupe
Object_id
bFarcedbject_id
bSystemObject
bCacheObject
bTimel omain
bReplizate
bR eclaimD eleted
bE henypted
bCompreszed

ColurnnCount
ColurmnlayoutOffzet
Datalffzet
Datalength
CompressedLenagth
CRC

RestareCount
LaztRestored VDT

Sys_BackupObject

Row_status
ID

VDT

User_id
Cache_id
BackupSet _id

Backup Schema ERD

Syz_Schemas
L=

RowSize =

Lava Editor Control

ObjectName
ObjectType

Object _id
bForceObject_id
bSystemObject
bCacheObject
bTimeDomain
bReplicate
bReclaimDeleted
bEncrypted
bCompressed
LicenceKey
RowsSize
ColumnCount
ColumnLayoutOffset
DataOffset
Datalength
CompressedLength
CRC

RestoreCount

LastRestored VDT

Sys_BackupSet

Row_status
ID

VDT
User_id
Cache_id
DatasetName

Description

Backup Schema

ObjectCount
DataSize_low
DataSize_high
Schema
Status
bLicenced

Encryptionkey

Event Schema

Syz_Event_Log

Fow_status

D

VDT
Event_Type_id
Object_id
Uzer_id
Seszion_id
Procedure_id
System_rc
Previous_event_id
MHext_event_id

[H]

| Syz_Users

o
Sys_Sessions !

-
=)

]

Event Schema

Sys_Eve

Row_status
ID
VDT

nt_Log

Event_Type_id

Object _id
User_id

Session_id

Procedure_id

System_rc

Sys_Ewvent_Typpe

Row_status
1D

WOT

Ewent
Dezcription
Clazs_id
Group_id
Sewerity

| —

Event Schema ERD

r?_l:s_l] bjects

Sys_Event_Class

Row_status
D

VDT
Event_class

Syz_ Event_Group

Fow_status
1D
YWDT

Event_Group

Event Schema

Event Schema

Previous_event_id

Next_event id

Sys_Event_Type

Row_status
ID

VDT

Event
Description
Class_id
Group_id

Severity

Parse Schema

SOL_ParseRoot

WOT
Command_CRC
CommandT ype
bFinal

bReplaced

bE xecuted
Roat_id
Session_id
SubRoaot_id
ParseResult
CaluranList_id
ColumnEnd_id
BindLizt_id
BindEnd_id
Waluelist_id
WalueE nd_id
ObjectLizt_id
ObjectEnd_id
PlanList_id
PlanEnd_id
FilterList_id
FilterEnd_id
OrderList_id
OrderEnd_id
GroupEnd_id
GroupList_id
HawinglList_id
HawingEnd_id
bColumng\ alidated
StartOffzet
Command&ddrass
EndOffzet
FetchBuffertddress
FetchT ableFormnat
TargetBufferdddress
ResultT ableF armat
ResultObject_id

S0L_PlanList

Fioot_id
ObjectMode_id

SOL_ColumnMode

o

Roat_id

b alid

bRowlD

bSelect

BFetch

bFilker

BOrder

bGroup

bPreAgaregate
bPosthagregate

bParse

|dent

Objecttode_id
SourceColumn_sequence
TargetColunin_sequence
Qualifiedident

Aliaz

Walue_id

SubRoot_id

BufferPoolR edirection_id
Index_id

ColurmnT ppe
ColurmniDffset

WarLength

Warlligits

WarFraction

WalueR ef

SegmentStart
SegmentEnd

Scanbiethod
ScanFiler_id
Querny_id

SOL_WalueList

50QL_FilterMode

Foot_id
Walue_numeric
B urneric

bText
TewtBuffer_addiess
Colurnntode_id
Operator
Lvalue_id
Rwalue_id
SegmentStart
SegmentEnd

£

4

Faoat_id
LeftMode_id
LeftT able_id
RightT able_id
Righttode_id
Operator
Lfilker_id *
Rfiler_id
bLeftOuter
bRightOuter
bR esult
bllueryFilter
SegmentStart
SegmentE nd

Parse Schema

[Lefmude [suL_l:olumnNode]]

[RightNode (SQL_ColumnMode)]

5S0L_0ObjectNode

SQL_ColumnNode

Root _id

bValid
bRowID

bSelect

bFetch

o

Root_id
Lavalbject_id
Ident
Schema_id
Alias

Qualifisd dent
EntryType
SubRoot_id
CalumnLink_id
Buffer&ddress
Fiow_id
SegmentStart
SegmentEnd

C

i

Sys_Schemas

Parse Schema ERD

i Sys_Objects

bFilter

bOrder

bGroup

bPreAggregate
bPostAggregate

bParse

Ident

ObjectNode_id
SourceColumn_sequence
TargetColumn_sequence
Qualifiedldent

Alias

Value _id

SubRoot_id
BufferPoolRedirection_id
Index_id

ColumnType
ColumnOffset
VarLength

VarDigits

VarFraction

ValueRef

SegmentStart

SegmentEnd

SQL_FilterNode

Root id
LeftNode id
LeftTable_id
RightTable_id

Parse Schema

RightNode_id
Operator
Lfilter_id
Rfilter_id
bLeftOuter
bRightOuter
bResult
bQueryFilter
SegmentStart

SegmentEnd

SQL_ObjectNode

Root _id
LavaObiject_id
Ident
Schema_id
Alias
Qualifiedldent
EntryType
SubRoot _id
ColumnLink_id
BufferAddress
Row _id
SegmentStart

SegmentEnd

SQL_ParseRoot

VDT
Command_CRC

Parse Schema

CommandType
bFinal
bReplaced
bExecuted
Root _id
Session_id
SubRoot_id
ParseResult
ColumnList_id
ColumnEnd _id
BindList_id
BindEnd_id
ValueList_id
ValueEnd_id
ObjectList_id
ObjectEnd_id
PlanList_id
PlanEnd_id
FilterList_id
FilterEnd_id
OrderList_id
OrderEnd_id
GroupEnd _id
GroupList_id
HavingList_id
HavingEnd_id

bColumnsValidated

StartOffset

CommandAddress

EndOffset

FetchBufferAddress

FetchTableFormat

Parse Schema

TargetBufferAddress
ResultTableFormat

ResultObject id

SQL_PlanList

Root _id
ObjectNode_id
ScanMethod

ScanFilter_id

Query_id

SQL_ValueList

Root _id
Value_numeric
bNumeric

bText

TextBuffer_address
ColumnNode _id
Operator

Lvalue_id
Rvalue_id
SegmentStart

SegmentEnd

Parse Schema

System Schema

Relational Integrity

[Sys_HRelations

Row_status

ID b

WOT
Sourcedbject_id
TargetObject_id
FielationType

[DeleteConstraint

UpdateConztraint
bEnforce
bDeferred
bDizable
RelationCaolumn_id

ColumnCont

System Schema

m

I' Sourcelbject [S5ysz_0Objects]]

1]

Ir TargetObject [Sys_0Objects]]

5 yz R elationColumns |

T argetColumn_sequence

Row_status

]

VDT

Relation_id
SourceColumn_sequence

Sys_RelationColumns

Row_status

ID
VDT

Relation_id

SourceColumn_sequence

TargetColumn_sequence

Sys_

Relations

Relational Integrity ERD

System Schema

Row_status

ID

VDT
SourceObject_id
TargetObject id
RelationType
DeleteConstraint
UpdateConstraint
bEnforce
bDeferred
bDisable
RelationColumn_id

ColumnCount

User / Session Tables

N G

Sys Users

Row_status
D
WOT

Sys_UserObjectAccess

Warzion

Uszer_name
Fazsword
Schema_id
bFrohibitLogin

m

Object_id
Arcesshd aszk

Sys_Schemas l_gl

System Schema

2]

I -
+ Sys_ Objects]

Lastbceess DateTime
LastE xpiry_date
Expirvlnterval

Sys_Threads

Row_status
D
VDT I=!

Sys_Sessions

Session_id
05_ThreadD
05_ThreadH andle
Type

Title

|dernt

—_—

Row_ztatus

D

YOT
SessionType
Jzer_id

td asterSession_id

| whark.stationl ser

whorkstation

Application

Schema_id

Clignt_IP

Server_|F
bCommitPending

bE =pired

Thread_id

Lock_count

Lok ait_count
Current_Tranzaction_id
LastAction_WDT
Sesszion_DateTime
TimeZane

ClientR equestSocket
ClientDiztributions ocket
LiztenerSemaphare
Serverllzer_id
ServerSesgion_id
ServerExecuteSocket
ServerRequestSocket
ExecuteSemaphore
RequestSemaphore
ColurnnPrivilege_Object_id
ObjectPriviege_Object_id
Sessiondbject_id

t ailzlatH andle

b ailslotwsriteH andle

m

Sys_ObjectPrivilege

m

ObjectPrivileae

Sys_Transactions

Row_status

i

D

VDT
Tranzaction_name
Session_id
béwtoCommit
Child_tranzaction_id
Parent_transaction_id
bSpstem

Sys_Cache

Row_status
ID
VDT

I
Sys Locks
Row_status
1]
WDT
Object_id
& Lock_Cache_id g
Seszzion_0 Cache_id
r; Offzet
Length
r" Tranzaction_id
— Seszion_id
Sys_Cache Member_lock_id
Fow status Owrer_lock_id
0 - ActionType
WOT
Object_id
Drata Offset
Length
Wirtualtddress £
Lock_id
Seszion_id Spz Reszerve
Tranzaction_id
Row_status
Statuz) yOT
MestedCache_id Obiect._id
e — o= —F
Seszion_id
FirgtF ow_id
LastRaw_id
Reservelink_id

User / Session ERD

System Schema

Object_id
Data_Offset
Length
VirtualAddress
Lock id
Session_id
Transaction_id
Status

NestedCache_id

Sys_Locks

Row_status

ID

VDT

Object _id
Lock_Cache_id
Session_0_Cache_id
Offset

Length
Transaction_id
Session_id
Member_lock _id
Owner_lock _id

ActionType

Sys_ObjectPrivilege

ObijectPrivilege

Sys_UserObjectAccess

Row_status
ID

VDT
User_id
Cache_id
Object _id

AccessMask

Sys_Reserve

Row_status
VDT
Object_id
Session_id
FirstRow_id
LastRow _id

ReserveLink id

Sys_Sessions

Row_status

ID

VDT
SessionType
User_id
MasterSession_id
WorkstationUser
Workstation

Application

System Schema

Schema_id

Client_IP

Server_IP
bCommitPending
bExpired

Thread_id

Lock_count
LockWait_count
Current_Transaction_id
LastAction_VDT
Session_DateTime
TimeZone
ClientRequestSocket
ClientDistributionSocket
ListenerSemaphore
ServerUser_id
ServerSession_id
ServerExecuteSocket
ServerRequestSocket
ExecuteSemaphore

RequestSemaphore

ColumnPrivilege_Obiject id
ObjectPrivilege_Obiject _id

SessionObject _id
MailslotHandle

MailslotWriteHandle

Sys_Threads

Row_status

ID

System Schema

VDT

Session_id
OS_ThreadID
OS_ThreadHandle
Type

Title

Ident

Sys_Transactions

Row_status

ID

VDT
Transaction_name
Session_id
bAutoCommit
Child_transaction_id
Parent_transaction_id

bSystem

Sys_Users

Row_status
ID

VDT
User_name
Password
Schema_id

bProhibitLogin

System Schema

System Schema

LastAccess_DateTime
LastExpiry_date

Expirylnterval

System Schema

Users / Sessions

Sys_Objects
Sys_ObjectPrivilege ::E)ow_status
ObjectPrivilege & WOT
blntermal
[bCache
bélias
bSysterm 5
bStandardiersion
Schema_id a]
C Object_Type
Object_name
Object_id
TDobject_id
TDarchive_id
TDonigin_id
Status Sys_Schemas
p! Docurmentation_test_id
Sys_Sessions User_id lFlijow_status
Fow_status Total_re‘_ads P VDT
- Tatal_writes Sys_Privileges
D Cache hits Schema_name
WD T Cache wsane Record_status Falder
SeszionT ype C —Usag io) Drezcription
Uszer_id ache_strategy wDT OwnerSchema_id
= A ReservedR owD efault ek . -
MasterSession_id Obiject_id blicenced
‘wiorkstationU zer Privilege bPrivilegeE nable
‘whork station Guota_MB
Application WarColumnObject_id
Schema_id Sys_Users YarDataObject_id
Client_|F — WarFreeSpacelbject_id
Server_|P Frow_status Sys_Rights
bCommitFending o l\E)DT Fecord_status
) ° L
Lack_court Paszward B EDT d |
Lockiw/ait_count Schema_id S h
Cunert_Transaction_id bFrohibitl ogin Sc.:h.ema_l.d
Lasthchion ¥OT Lasthcoess_DateTime Privilege_id
Session_DateTime L astE wpiry_date ¢
TimeZone E xpirylnterval
ClientRequestSocket
ClientDistributionS ocket
ListenerSemaphore
Serverser_id
ServerSession_id
ServerEsecuteSocket Sys_Wirtual
ServerRequestSocket
ExecuteSemaphare Row_status
FequestSemaphore l\ul':')DT
ColumnPrivilege_Object_id = S ession id
DbijectPrivilege_Object_id V;fj;?&‘a"j[ess
SessionObject_id UsedEvtes
MailslatHandle o
MailslotwriteHandle ocatedBytes
IncrementPercentage
Status
bFixed

User / Session / Privilege ERD

Objects / Tables

[System_ControlFile]

Fow_stabus
D

Objectt ame
Table_id

Sys_Tables

Fow_status
D
WDT

1]

System Schema

[Sys_Table_Columns

Dratafile_id
FileHandle
Object_id
ColumnCount
RowSize
FreeRows

bbd ount

bSpstem
bOiztributed

bR ezerePending
bTemparary
bWirtual

bR awT able
bStandarderzion
bFramed
bReclaimDeleted
bRelocate
bCache
bRead0nly
bTimeDomain
bOpen

bdliaz

b obify

bHugeT able

1]

Sys_Alas

Frow_stabus

D

VDT

Object_id

Aliaz0bject_id

Aliaz
——

[Sys_Objects

Fow_status
|0

VDT
blrternal
bhCache

bMonStandard
ReplicatorObject_id
TDobject_id
TDarchive_id
Yirtualtddress_pointer
Statuz
Heapdddress
Yirtualtddress
CurrentSize
MextSize
zedRows

LockSeszion_id

in]

balias

bSystem
bStandardYersion
Schema_id
Object_Type
Object_name
Object_id
TDabject_id
TDarchive_id
TDonigin_id

Status
Diocumentation_test_id
Jzer_id

Total_reads
Total_writes
Cache_hits
Cache_uszage
Cache_strateqy
ReservedR awD efault

in]

DataFile_id
Lapout_id
Column_id
Object_id
ColurmnCount
lzedRowms
FreeRows
FowSize
CurrentSize
Backup VDT
bTimeDomain
bReplicate
bReclaimDeleted
bR awT able

hallowR estore

Fow_status

D

WDT

Table_ID
Colurmn_Sequence
WarColurnn_ID
Binary_ID
BufferPoolR edirection_id
Colurmn_Mame
Data_Tupe
[Data_Length
Decimal_Digits
Decimal_Fraction
Dimengion
Colurnn_Offzet
Format_id
Drefault_ID
bMullable
bSpstem
bPrimary WDT
bR owlD

bCache

bFixCache

u]

Sys_ColumnBufferPool]

Object_id

Sys Schemas

System_ControlFile

Row_status

Row_status

]

WOT
Schema_name
Folder

Description
OwnerSchema_id
blLicenced
bPrivileqeE nable
(uota_MB
WarColumnObject_id
WarD ataObject_id

WarFreeSpaceObject_id

Object / Table ERD

Colurnn_sequence
Data_type
bSystem

bFied

bR ol D

bt etaBuffer |
VDT
BufferObject_id
Fangelbject_id
Tranzaction_id
Ilzage_count
BuildTime
RangeR atio

niqueness

ID
ObjectName
Table_id
Datafile_id
FileHandle
Object _id
ColumnCount
RowsSize
FreeRows
bMount
bSystem
bDistributed

bReservePending

bTemporary
bVirtual
bRawTable

bStandardVersion

bFramed

bReclaimDeleted

bRelocate
bCache
bReadOnly
bTimeDomain
bOpen

bAlias
bNotify
bHugeTable
bNonStandard

ReplicatorObject_id

TDobject _id
TDarchive_id

System Schema

VirtualAddress_pointer
Status

HeapAddress
VirtualAddress
CurrentSize

NextSize

UsedRows

LockSession_id

Sys_Alias

Row_status

ID

VDT

Object _id
AliasObject id
Alias

Sys_ColumnBufferPool

Object _id
Column_sequence
Data_type
bSystem

bFixed

bRowlID
bMetaBuffer
VDT
BufferObject_id
RangeObiject_id

Transaction_id

System Schema

System Schema

Usage_count
BuildTime
RangeRatio

Uniqueness

Sys_Objects

Row_status

ID

VDT

binternal

bCache

bAlias

bSystem
bStandardVersion
Schema_id
Object_Type
Object_name
Obiject _id
TDobject_id
TDarchive_id
TDorigin_id
Status
Documentation_text_id
User_id

Total _reads

Total_writes
Cache_hits
Cache_usage

Cache_strategy

System Schema

ReservedRowDefault

Sys_Schemas

Row_status

ID

VDT
Schema_name
Folder
Description
OwnerSchema_id
bLicenced
bPrivilegeEnable
Quota_MB
VarColumnObject _id
VarDataObject _id

VarFreeSpaceObject_id

Sys_Tables

Row_status
ID

VDT
DataFile_id
Layout_id
Column_id
Object_id
ColumnCount
UsedRows

FreeRows

System Schema

RowsSize
CurrentSize
Backup_VDT
bTimeDomain
bReplicate
bReclaimDeleted
bRawTable

bAllowRestore

Sys_Table_Columns

Row_status

ID

VDT

Table_ID
Column_Sequence
VarColumn_ID
Binary_ID
BufferPoolRedirection _id
Column_Name
Data_Type
Data_Length
Decimal_Digits
Decimal_Fraction
Dimension

Column_Offset

Format_id
Default_ID
bNullable

bSystem

Lava Structures

bPrimary VDT
bRowlID
bCache
bFixCache

Lava Structures

API Structures and Constants

This section of the reference specifies structures (record formats) and constants necessary for interfacing to the
Lava API. The structures are listed in alphabetical order.

Structures and constants defined in this reference are specified in Pascal / Oberon format. Note that in this
syntax, the variable type follows the variable name, the opposite to C syntax - for C declarations of these
entities consult the appropriate addendum and header files.

Lava Structures

The following structures are required for various parameters in the Lava API. The listing is alphabetical, with
the addition of hyperlinks to structures and types which expand to further definitions. For reference, the Oberon

base types are listed with C equivalent.

Base Types

Oberon Type C Equivalent
ARRAY [x] OF

ARRAY [x] OF CHAR

BOOLEAN No direct equivalent -

closest is byte
BYTE
CHAR
INTEGER
LONGINT
LONGREAL
POINTER TO
PTR
SHORTINT
SHORTREAL

BackupSetType

BackupSetType
VDT
ObjectCount
Schema
EncryptionKey

Description
Array of x elements of whichever type is nominated

Zero terminated ASCII character string of maximum x
characters

1-byte boolean value - TRUE(1) or FALSE (0)

1-byte value

1-byte ASCII character

2-byte signed integer

4-byte signed integer

8-byte float

Pointer to whichever type is nominated
Anonymous pointer (pointer to untyped memory).
1-byte signed integer

4-byte float

RECORD
LONGREAL ;
INTEGER;
Label ;
Label ;

Lava Structures

END;

ColumnArray_Type

ColumnArray_Type = ARRAY 10000 OF Sys Table Columns Type;

ColumnScan_Type

ColumnScan_Type =

RECORD
Session_id : LONGINT;
Object _id : LONGINT;
Column_Sequence : LONGINT;
BufferRedirection_id : LONGINT;
Buffer_VDT : LONGREAL ;
LastBufferlndex : LONGINT;
LastRowlD : LONGINT;
DataType : LONGINT;
Condition : LONGINT;
ScanValueAddress : LONGINT;
ColumnValue : LONGREAL ;
ColumnString : ARRAY 12 OF CHAR;
ColumnQuad : QUADINTEGER;
END;
CommandParamType
CommandParamType = RECORD
Ident . ARRAY 60 OF CHAR;
Value - ARRAY 260 OF CHAR;
FloatValue : LONGREAL;
END;
CommandLineType
CommandLineType = RECORD
Count = LONGINT;
Param . ARRAY 25 OF CommandParamType;
END;
DateClass
DateClass = RECORD
Year : INTEGER;
Month : INTEGER;
Day : INTEGER;
Julian . LONGINT;
END;

Heap Sort Procedure Types

CompareProc
SwapProc

PROCEDURE(pLowldx, pHighldx
PROCEDURE(pLowldx, pHighldx

LONGINT) : BOOLEAN;
LONGINT) ;

Lava Structures
Label

Label = ARRAY LABEL_LENGTH OF CHAR;

ObjectArrayType

ObjectArrayType = ARRAY 100 OF ObjectBackupType;

ObjectBackupType

ObjectBackupType = RECORD
ObjectName : Label ;
ObjectType : LONGINT;
Object id : LONGINT;
bForceObject id : BOOLEAN;
bSystemTable : BOOLEAN;
bCacheTable : BOOLEAN;
bTimeDomain : BOOLEAN;
bReplicate : BOOLEAN;
bReclaimDeleted : BOOLEAN;
RecordLength : LONGINT;
ColumnCount : INTEGER;
ColumnLayoutOffset : LONGINT;
DataOffset : QUADINTEGER;
DatalLength : QUADINTEGER;
bEncrypted : BOOLEAN;

END;

QUADINTEGER

QUADINTEGER = RECORD
Low = LONGINT;
High = LONGINT;

END;

Sys_Query_Type

Sys _Query_Type =

RECORD
Row_status SHORTINT;
Column_id ARRAY 10 OF LONGINT;
Value_type ARRAY 10 OF LONGINT;

Value_length

Value_ float
Value_long
Value_string_address

ARRAY 10 OF LONGINT;
ARRAY 10 OF LONGREAL;
ARRAY 10 OF LONGINT;
ARRAY 10 OF LONGINT;

Condition ARRAY 10 OF LONGINT;
ScanGroup ColumnScan_Type;
MatchTable_id LONGINT;
BufferAddress LONGINT;

bPersistent BOOLEAN;
bCaselnsensitive BOOLEAN;
bRangelnequality BOOLEAN;
Inequalitylndex LONGINT;

END;

Sys_Table_Columns_Type

Sys Table Columns_Type

RECORD
Row_status
ID
VDT
Table 1D

Column_Sequence

VarColumn_ID
Binary ID

BufferPoolRedirection_id

Column_Name
Data_Type
Data_Length
Decimal_Digit

S

Decimal_Fraction

Dimension
Column_Offset
Format_id
Default_ID
bNullable
bSystem
bPrimary_ VDT
bRowlID
bCache
bFixCache
END;

TableColumnPointer

TableColumnPointer

TableColumnType

TableColumnType
RowSize
ColumnCount
bHeapAl located
ColumnArray

TableFormatPointer

TableFormatPointer

TimeClass

TimeClass
Hour
Minute
Second
MilliSecond

Moes on an a0]
=
W)

RECORD

INTEGER;
INTEGER;
INTEGER;
INTEGER;

POINTER TO

SHORTINT;
LONGINT;
LONGREAL;
LONGINT;
LONGINT;
LONGINT;
LONGINT;
LONGINT;
ARRAY 50
LONGINT;
LONGINT;
LONGINT;
LONGINT;
LONGINT;
LONGINT;
LONGINT;
LONGINT;
BOOLEAN;;
BOOLEAN;;
BOOLEAN;
BOOLEAN;
BOOLEAN;
BOOLEAN;;

ColumnArray Type;

RECORD

: LONGINT;

: INTEGER;

: BOOLEAN;

: TableColumnPointer;
END;

POINTER TO TableColumnType;

Lava Structures

OF CHAR;

Util_SearchMatch_Type

*)

Util_SearchMatch_Type
RECORD
Row_status
SourceName
Path_id
Node id
MatchType_id

EditHandle

Offset

Length

FoundString
END;

Lava API Constants

SHORTINT;

ARRAY 100 OF CHAR;

LONGINT;

LONGINT;

LONGINT; (* see Search Match Types

LONGINT;
LONGINT;
LONGINT;
ARRAY 100 OF CHAR;

Lava API Constants

Lava API Constants

Comparison Constants

SQL_TOKEN_EQ = 9;
SQL_TOKEN_NEQ = 10;
SQL_TOKEN_LT = 11;
SQL_TOKEN_LEQ = 12;
SQL_TOKEN_GT = 13;
SQL_TOKEN_GEQ = 14;
Data Type Constants

BYTE_TYPE = 1H;

SHORTINT_TYPE = 2H; (* 2-byte integer, signed, max 65535 *)
INTEGER_TYPE = 3H; (* 4-byte integer, signed, max 2.147 E
09 *

QUADINTEGER_TYPE = 4H; (* 8-byte integer, signed, max 9.223 E
18 *)

FLOAT_TYPE = 7H; (* 8-byte real, 10-bit exponent *)

BOOLEAN_TYPE = 8H; (* 1-byte boolean value, O=FALSE,
1=TRUE *)

CHAR_TYPE = OH; (* 1-byte character *)

STRING_TYPE = OAH; (* fixed length ascii string *)

UNICODE_TYPE = 2AH; (* fixed length unicode string *)

VARSTRING_TYPE = OBH; (* variable length column ascii string
with Ffixed length maximum in-column
string storage *)

VARUNICODE_TYPE = 2BH; (* variable length unicode string *)

IP_TYPE = OFH; (* IP address *)

ROWSTATUS_TYPE = 21H; (* 1-byte unsigned row status *)

ROWID_TYPE = 23H; (* 4-byte integer, unsigned, of type
Row 1D *)

DATE_TYPE = 33H; (* 4-byte integer, unsigned, Julian
date *)

VDT_TYPE = 37H; (* 8-byte real, integer part = Julian

date, fractional part = milliseconds
after midnight *)

TIME_TYPE = 43H; (* 4-byte integer, unsigned,
milliseconds after midnight *)

Editor Bookmark Types

BOOKMARK_BREAKPOINT = iz

BOOKMARK_D 1 SABLEDBREAKPOINT = 2

BOOKMARK_USER = 3;
Backup Set Constants

LABEL_LENGTH = 100;

Shutdown Modes

SHUTDOWN_NORMAL -

1051;

SHUTDOWN_ IMMEDIATE
SHUTDOWN_ABORT

Startup Modes

OPEN_SERVER
OPEN_EXCLUSIVE
OPEN_CLIENT
OPEN_STANDBYSERVER

Object Types

*)

SQL_OBJECT_TABLE
SQL_OBJECT _RESERVED
SQL_OBJECT _VIEW
SQL_OBJECT_PROCEDURE
SQL_OBJECT_TRIGGER
SQL_OBJECT_FUNCTION
SQL_OBJECT_PACKAGE
SQL_OBJECT PSEUDOTABLE

SQL_OBJECT_MASK

(*..Object type attributes *)

SQL_OBJECT_ALLOWRESTORE

SQL_OBJECT_VIRTUAL
SQL_OBJECT_RAW
SQL_OBJECT PERSISTENT

SQL_OBJECT_NONSTANDARD

SQL_OBJECT_FRAMED

SQL_OBJECT_RELOCATE
SQL_OBJECT_INTERNAL

SQL_OBJECT _RESULTSET

SQL_OBJECT_TIMEDOMAIN

SQL_OBJECT_TDARCHIVE

SQL_OBJECT_COLUMNBUFFER

1052;
1053;

1002;
1003;
1004 ;
1005;

1H;
2H;
3H;
4H;
5H;
6H;
7H;
8H;

OFFFH;

00001000H;

00010000H;
00020000H;
00040000H;

00080000H;

00100000H;

00200000H;
00400000H;

00800000H;

01000000H;

02000000H;

04000000H;

Lava API Constants

(* Table may be

restored not valid
for most system
tables *)

(* Flags virtual
table as persistent
*)

(* Flags table as
nonstandard format
get / put cannot be
performed *)

(* Flags table as a
sql result set -
allows creation of
duplicate table names

*)

(* Table is a time-
domain replicator *)
(* Table is a time-
domain archive

(* Table is a column

SQL_OBJECT_INSTANCECOPY

SQL_OBJECT _ATTRIBUTE_MASK
SQL_OBJECT_VIRTUAL_MASK
SQL_OBJECT_INDEX_MASK

(*.Composite types *)

08000000H;

OFFOOOOH;
OOFOOOO0H;
OFOOOOO0H;

SQL_OBJECT_PERSISTENT VIRTUAL_TABLE =

Primary Format Codes

FORMAT _P_GENERAL
FORMAT_P_NUMBER
FORMAT_P_CURRENCY
FORMAT_P_ACCOUNTING
FORMAT _P_DATE
FORMAT _P_TIME
FORMAT _P_PERCENTAGE
FORMAT_P_SCIENTIFIC

FORMAT _P_HEXQUAD
FORMAT_P_VDT
FORMAT P_IP
FORMAT _P_BOOLEAN
FORMAT _P_STRING
FORMAT _P_NULL
FORMAT _P_LONGREAL
FORMAT_P_BYTE

FORMAT_P_INTEGER
FORMAT_P_LONGINT

FORMAT_P_QUADINTEGER

FORMAT_P_CHAR
FORMAT_P_VARSTRING
FORMAT_P_UNICODE

FORMAT_P_UNDEFINED

FORMAT _P_FORMAT_MASK

FORMAT_P_TYPE_MASK

Search Match Types

MATCH_NODETITLE
MATCH_NODETEXT
MATCH_KEYWORD
MATCH_DOCUMENTNAME

MATCH_DOCUMENTCONTENT

OOOH;
001H;
002H;
O03H;
004H;
O05H;
O06H;
O07H;

O08H;
O0%9H;
OO0AH;

OOBH;
OOCH;

OODH;

OOOH;
100H;
200H;
300H;
400H;
500H;
600H;
700H;
800H;

0OFFH;
OFOOH;

Lava API Constants

buffer *)

(* Table is an
instance copy of a
table prototype *)

SQL_OBJECT _TABLE +
SQL_OBJECT VIRTUAL +
SQL_OBJECT_PERSISTENT;

(* Formatting routine outputs a
blank string *)

Lava API Constants

MATCH_FILECONTENT = 6;

Secondary Format Codes

FORMAT _S_NULL = 0;
FORMAT_S_BASE_BINARY = 1:
FORMAT_S_BASE_HEX = -
FORMAT _S_NEGATIVE_1 = 0; (* -1,234.10 *)
FORMAT_S_NEGATIVE_2 S (* 1,234.10 RED *)
FORMAT_S_NEGATIVE_3 = 72 (* (1,234.10) *)

FORMAT_S_NEGATIVE_4 3; (* (1,234.10) RED *)

FORMAT_S DATE_1 1; dd/mm/yy *)
FORMAT_S DATE_2 2; ¢ dd/mm/yyyy *)
FORMAT _S DATE_3 3; ¢ mm/dd/yy *)
FORMAT _S DATE_4 4; ¢ mm/dd/yyyy *)
FORMAT_S_DATE_5 mmm dd, yyyy *)

FORMAT_S DATE_6 6; ¢ mmmmmmmmm dd, yyyy *)

{1 I 1 /A | A
a1
~
*

FORMAT_S_DATE_7 7; * dd mmm yy *)
FORMAT_S_DATE_S8 8; * dd mmm yyyy *)
FORMAT _S DATE_9 9; ¢ yyyy/mm/dd *)
FORMAT_S TIME_1 = 1; * hh:mm *)
FORMAT_S_TIME_2 = 2; (* hh:mm:ss *)
FORMAT_S_TIME_3 = 3; * hh:zmmXMm *)
FORMAT_S TIME_4 = 4; (* hhzmm:ssXM *)
FORMAT_S TIME_5 = 5; * hhmm *)
FORMAT_S TIME_6 = 6; (* hhmmss *)
Table Location

SQL_OBJECT_LOCAL - = O0O001H;
SQL_OBJECT_SERVER - = O0O002H;
SQL_OBJECT_DISTRIBUTED - = O0O010H;
SQL_OBJECT_LOCATION_MASK - = OOOFH;
SQL_OBJECT_OPTION_MASK - = OOFOH;

Lava API Constants

Appendix | : Lava Error Codes

Oberon Examples

Appendix Il : Source Code Examples

The source code examples provided below are divided into four major categories - Oberon, Pascal (Delphi),

Clarion and C. Although virtually any language from assembly through Basic can be used to interface to the
Lava database, the examples provided should cover a wide enough scope that most programmers working in
most languages should be able to find suitable source to illustrate a given principle.

Oberon Examples

Backup Set Creation

Backup Set Restore

Instance tables

SQL Execution and Data
Extraction

Virtual table pointers

Table Creation

Backup Set Creation

Backup Set Restore

Instance tables

SQL Execution and Data Extraction

See also
Virtual table pointers

Virtual table pointers

Table Creation

Oberon Examples

Appendix Il : SQL Examples

Grouping aggregates, subqueries An example including subqueries in the column

Simple examples

Advanced examples

Grouping aggregates, subqueries

The following example demonstrates the use of a subquery in the column list, as well as the use of a Group By
clause to group aggregate results. In addition, the use of column and table aliases is demonstrated.

select
(select
schema_name
from
sys _objects o, sys_schemas s
where
o.id = scf.id and
s.id = o.schema_id) SchemaName,
sum(usedrows * rowsize) ts
from
system_controlfile scf
group by
schemaname

The result set for the above query executed on a freshly created Lava Database is as follows :

Advanced examples

SchemaM ame | batal size [bByptes] |
i Backup | 0.00
2 Design 487 .00
3 Dictionary 0.00
4 Event 2127 318.00
B Linker 0.0a
g Parze 128 226.00
7 Scratch 0.oa
8 Sheet 71.5954.00
3 SYSTEM £ 075 455.00
10 Template 0.00
11 Util 1.212.00
12 Yitual BE.00

Group By example 1

Advanced examples

Appendix IV : ODBC Interface

This appendix documents the Lava ODBC interface, which is provided for legacy SQL support. Although this
is a functional driver, and it is possible to extract data from and update data in the Lava Database using the
facilities provided in this driver, its use is strongly discouraged.

The techniques used to interface to server databases in the ODBC methodology are completely outdated, and
should be avoided if at all possible. The Lava Database presents techniques for interfacing to the database
which are vastly improved, many times faster and much more flexible than the ODBC techniques.

For information on the Please consult the sections Lava SQL Reference and The Lava API for information on
the native Lava interfaces, and in particular the section Key Concepts in the Lava Database and the reference for
the command LavaCommand which provides direct SQL access into the Lava Database should be consulted to
acquire information on the totally revised techniques used in the native interface to the Lava Database. The
coded example SQL Execution and Data Extraction may also be consulted for insight into the native
mechanisms provided.

	Table of Contents
	List of Illustrations
	Introduction
	Manual Scope and Target Audience
	Using This Reference
	Reference Manual Structure
	Lava Features and Constraints
	Lava SQL Reference
	The Lava Access Privilege System
	The Lava API
	The Lava System Schemas
	API Structures and Constants
	Appendix I : Lava Error Codes
	Appendix II : Source Code Examples
	Appendix III : SQL Examples
	Appendix IV : ODBC Interface

	Lava Features and Constraints
	Database limits
	Technical Support
	Lava Kernel Releases
	Future enhancement
	Integrity constraints on columns
	Stored procedures and functions
	Triggers
	Internet / HTML support
	Time-Domain
	Column-level access restrictions
	Views
	Standby server
	Nested schemas
	Linux Lava Server release

	ODBC Interface
	Key Concepts in the Lava Database
	Array Access to Virtual Tables
	Boolean Variables
	Column buffer
	Column Sequence
	Control file
	DataGrid
	Distribution
	Distributed Client
	Foreign Key
	Index
	Relations, foreign keys and inter-table joins
	Mount mode
	Object /Object ID
	Primary Key
	Raw Tables
	Replicator Tables
	Result set
	Return code (rc)
	Row ID /ID
	Row status
	Schema
	Session / Session ID
	SQL Command Execution
	Stack Tables
	Transaction frame
	User
	VDT
	Virtual Tables

	Lava SQL Reference
	Introduction
	Supported Data Types
	Data types and sizes
	Variable length types

	Nulls in the Lava Database
	SQL Operators, Functions and Conditions
	Functions
	Aggregates
	Reserved expressions
	Comparisons

	SQL in the Lava Database
	SQL Command Categories
	Database Manipulation
	Schema Manipulation
	User Manipulation
	Table Manipulation
	Data Extraction and Manipulation
	Transaction Statements
	Miscellaneous Statements and Clauses
	Future Enhancement

	SQL Command Reference
	Alter schema
	Alter table
	Alter session
	Alter user
	Backup
	Column List Clause - Insert
	Column List Clause - Select
	Column List Clause - Specification
	Column List Clause - Drop
	Column List Clause - Update
	Commit
	Connect
	Create Database
	Create schema
	Create relation
	Create sequence
	Create synonym / Create alias
	Create table
	Create user
	Create view
	Delete
	Disconnect
	Dismount
	Distribute
	Drop schema
	Drop sequence
	Drop relation
	Drop synonym / Drop alias
	Drop table
	Drop user
	Drop view
	Grant role
	Grant privilege
	Group by Clause
	Insert
	Mount
	Order by Clause
	Rename schema
	Rename sequence
	Rename synonym / Rename alias
	Rename table
	Rename user
	Rename view
	Restore
	Revoke privilege
	Rollback
	Savepoint
	Select, Select Statement
	Set
	Subqueries
	Lava pseudo-table
	Table List Clause
	Truncate
	Undelete
	Update
	Value List Clause
	Where Clause

	SQL Syntax Specification

	The Lava Access Privilege System
	Lava Privileges

	The Lava API
	API Categories
	Mandatory Interfaces
	Dismount
	Mount
	CreateDatabase
	OpenSession
	CloseSession

	User Manipulation
	CreateUser
	DropUser
	DisableUser
	EnableUser

	Lava Schema Manipulation
	CreateSchema
	DropSchema

	Lava Table Search Functions
	SetQueryParameter
	CloseQuery
	NextQueryResult
	SeekQueryResult
	FirstColumnEntry
	NextColumnEntry
	PreviousColumnEntry

	Lava Entry ID Functions
	FindSchema
	GetObject_id
	FindUser

	Lava Table Manipulation
	TableColumns
	TableRows
	TableSize
	ColumnSpec
	CreateTableInstance
	CreateTable
	AssertTablePointer
	DropTable
	TruncateTable
	RenameTableColumn
	RenameTable
	AllocateColumnSpace
	FreeColumnSpace

	Transaction Frames
	LocksExist
	Set_Transaction
	Commit
	Rollback
	TransactionExists

	Lava Private Memory Management
	CreatePrivateMemory
	DropPrivateMemory
	GetPrivateMemoryAddress
	ExtendPrivateMemory
	WritePrivateMemory
	ClearPrivateMemory
	ReadPrivateMemory

	Lava Replicator Table Functions
	ReplicatorToDisk
	ExtendReplicatorTable
	Virtual_Realloc

	Lava Row-level Table Interface
	GetColumn
	GetRow
	PutColumn
	PutRow
	AddRow
	DeleteRow

	Lava Raw Table Interface
	InsertRow_VirtualRaw
	DeleteRow_VirtualRaw

	Distributed Client Operation
	RequestUpdateEvent
	DistributeSchema

	Lava Thread Support
	StartThread
	CloseThread

	Lava Stack Tables
	Push
	Pop
	GetStackTop
	ClearStack

	SQL Interface
	LavaCommand

	Miscellaneous Interfaces
	LogEvent
	GetServerDateTime
	FormatNumber
	Format_VDT
	GetDate
	GetTime
	HPtimestamp
	JulianDate
	JulianTime
	ServerDate
	Extract_VDT_Time
	GregorianDate
	MonthDays
	DayOfWeek
	Random
	HeapSort
	ParseCommandLine
	GetCommandParm
	BlockCRC
	StringCRC
	EndActivity
	ShowActivity
	StartActivity
	MessageBox
	ExtractFileName
	SplitFullName

	Lava Backup System
	CreateBackupSet
	BackupObjectData
	FinaliseBackup
	OpenBackupSet
	RestoreObjectData
	CloseBackupSet
	SetBackupFolder

	Lava DataGrid Control
	CreateGrid
	RefreshGrid
	SetColumnWidth
	SetColumnTitle
	SetGridRow
	GetGridRow
	SetColumnVisible

	Lava Compression
	Compress
	Decompress

	Lava Editor Control
	TextExtract
	AppendText
	ClearContent
	SearchFiles
	Search
	Replace
	GotoPos
	GotoOffset
	Copy
	GetSelectedText
	SelectSegment
	Paste
	Cut
	ClearSelection
	NewEditWindow
	ResizeWindow
	SetGutter
	SetScrollBar
	CloseEditWindow
	TextModified
	LoadFile
	SaveFile
	SetBookmark
	NextBookmark
	PreviousBookmark
	ResetBookmark
	ResetAllBookmarks

	The Lava System Schemas
	Backup Schema
	Sys_BackupObject
	Sys_BackupSet

	Event Schema
	Sys_Event_Log
	Sys_Event_Type

	Parse Schema
	SQL_ColumnNode
	SQL_FilterNode
	SQL_ObjectNode
	SQL_ParseRoot
	SQL_PlanList
	SQL_ValueList

	System Schema
	Sys_RelationColumns
	Sys_Relations
	Sys_Cache
	Sys_Locks
	Sys_ObjectPrivilege
	Sys_UserObjectAccess
	Sys_Reserve
	Sys_Sessions
	Sys_Threads
	Sys_Transactions
	Sys_Users
	System_ControlFile
	Sys_Alias
	Sys_ColumnBufferPool
	Sys_Objects
	Sys_Schemas
	Sys_Tables
	Sys_Table_Columns

	API Structures and Constants
	Lava Structures
	Base Types
	BackupSetType

	Lava API Constants

	Appendix I : Lava Error Codes
	Appendix II : Source Code Examples
	Oberon Examples
	Backup Set Creation
	Backup Set Restore
	Instance tables
	SQL Execution and Data Extraction
	Virtual table pointers
	Table Creation

	Appendix III : SQL Examples
	Simple examples
	Advanced examples
	Grouping aggregates, subqueries

	Appendix IV : ODBC Interface

